ESISAR 5A	
Department : AUTOMATIQUE	
Damien KOENIG	- 2 so vimul
2023 : Fault Diagnosis	+

TP 3: PARITY SPACE APPROACH

Objective: Build a bank of residuals in order to detect and isolate the fault sensor

1 SENSOR FAULT DETECTION AND ISOLATION FOR A BOILER SYSTEM EXCHANGER: PARITY SPACE APPROACH

Theoretical study

Consider the following boiler system exchanger

The variables are:

- T_{c} : output water temperature at the boiler
${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}$ $\mathrm{m}^{3} / \mathrm{h}$

1/h
1/h

The state of the system is desbribed by the following relation :

$$
\mathrm{x}(\mathrm{k})=\left(\mathrm{T}_{\mathrm{c}}(\mathrm{k}) \mathrm{T}_{\mathrm{p}}(\mathrm{k}) \mathrm{T}_{\mathrm{s}}(\mathrm{k})\right)^{\mathrm{T}}
$$

the control inputs by :

$$
\mathrm{u}(\mathrm{k})=\left(\mathrm{Q}_{\mathrm{g}}(\mathrm{k}-2) \mathrm{Q}_{\mathrm{p}}(\mathrm{k}-1) \mathrm{Q}_{\mathrm{p}}(\mathrm{k}-5) \mathrm{Q}_{\mathrm{s}}(\mathrm{k}-1)\right)
$$

And the output by :

$$
y(k)=\left(T_{c}(k) \quad T_{p}(k) \quad T_{s}(k)\right)^{T}
$$

The matrices A, B and C are given by :

$$
A=\left[\begin{array}{ccc}
a_{11} & a_{12} & 0 \\
a_{21} & a_{22} & 0 \\
a_{31} & 0 & a_{33}
\end{array}\right], B=\left[\begin{array}{cccc}
b_{11} & 0 & b_{13} & 0 \\
0 & b_{22} & 0 & b_{24} \\
0 & b_{32} & 0 & b_{34}
\end{array}\right], \mathrm{C}=I_{3}
$$

Using a identification process, web obtain the matrices A and B
$A=\left[\begin{array}{ccc}0.9494 & 0.0718 & 0 \\ 0.2363 & 0.5801 & 0 \\ 0.2388 & 0 & 0.5483\end{array}\right] \quad B=\left[\begin{array}{cccc}0.0557 & 0 & -0.0068 & 0 \\ 0 & 0.0329 & 0 & -0.0112 \\ 0 & 0.0132 & 0 & -0.0429\end{array}\right]$

1.1 Parity space

- Without increasing the time k , how many parity equations can be deduced?
- Gives the parity equations with a minimum horizon of observation, to limit the detection delays.
- Gives the fault location decision table, each sensor fault alarm with the logic decision.
- Using matab/simuling gives the implementation solution

2 STATIC PARITY SPACE WITH NON PERFECT DECOUPLING

Consider the static output relation:

$$
\mathrm{y}(\mathrm{k})=\mathrm{Cx}(\mathrm{k})+\mathrm{\varepsilon}(\mathrm{k})+\mathrm{Fd}(\mathrm{k})
$$

where $x \in R^{n}, y \in R^{m}$ and $d \in R^{p}$.
$y(k)$ is the output measurement, $x(k)$ the state variable, $d(k)$ the fault vector to be detected and $\varepsilon(k)$ the noise measurement. Matrices C and F are known with appropriate dimension.

Assumption: $\mathrm{m}>\mathrm{n}$ for a redundancy information existence.

We will find a parity vector sensitive to $\mathrm{p}-1$ defaults and insensitive to d_{i} which represent the ith component of d .
This leads to explain the measurement vector in the form:

$$
\mathrm{y}(\mathrm{k})=\mathrm{Cx}(\mathrm{k})+\mathrm{\varepsilon}(\mathrm{k})+\mathrm{F}^{+} \mathrm{d}^{+}(\mathrm{k})+\mathrm{F}^{-} \mathrm{d}^{-}(\mathrm{k})
$$

where d^{+}are d^{-}are respectively the sensitive and insensitive faults. F^{+}et F^{-}are the associated matrices.

2.1 Numerical Application:

Consider the following system:

$$
\mathrm{C}=\left(\begin{array}{lll}
1 & 2 & 1 \\
1 & 0 & 2 \\
1 & 1 & 1 \\
1 & 0 & 1 \\
2 & 0 & 2
\end{array}\right), \quad \mathrm{F}^{-}=\left(\begin{array}{ll}
1 & 2 \\
1 & 2 \\
0 & 0 \\
2 & 5 \\
0 & 1
\end{array}\right), \quad \mathrm{F}^{+}=\left(\begin{array}{l}
1 \\
0 \\
3 \\
1 \\
1
\end{array}\right)
$$

- Find the kernel w with the optimization problem described bellow. Give $w^{T} F^{-}$and $w^{T} \mathrm{~F}^{+}$.
- Check the products $w^{\mathrm{T}} \mathrm{C}, \mathrm{w}^{\mathrm{T}} \mathrm{F}^{-}$and $\mathrm{w}^{\mathrm{T}} \mathrm{F}^{+}$and conclude.

Solution: The problem is reduced to find a matrices W such that

$$
\begin{equation*}
\mathrm{W}\left(\mathrm{C} \mathrm{~F}^{-}\right)=0 \tag{1}
\end{equation*}
$$

where the parity vector is given by : $\mathrm{p}(\mathrm{k})=\mathrm{W} \varepsilon(\mathrm{k})+\mathrm{WF}^{+} \mathrm{d}^{+}(\mathrm{k})$

The exact solution W of (1) holds if and if the line rank of (C F$)$ is deficient. If not the following optimization problem can be used:

$$
\left\{\begin{array}{l}
w^{T} C=0 \\
\min _{w} \frac{\left\|w^{T} F^{-}\right\|^{2}}{\left\|w^{T} F^{+}\right\|^{2}} \quad \text { remark: } \max (f(x))=-\min (-f(x)) \text { example } f(x)=x^{2}-2
\end{array}\right.
$$

Explanation

Consider $\mathrm{C}=\binom{\mathrm{C}_{1}}{\mathrm{C}_{2}}$ where C 1 is of full rank. The constraints $w^{\mathrm{T}} \mathrm{C}=0$ is true by using the following changement :

$$
\mathrm{w}=\mathrm{Pw}_{2}
$$

where $\mathrm{P}=\binom{-\left(\mathrm{C}_{1}^{-1}\right)^{\mathrm{T}} \mathrm{C}_{2}^{\mathrm{T}}}{\mathrm{I}}$.
Proof : $w^{T} C=0 \Leftrightarrow\left(\begin{array}{ll}w_{1}^{T} & w_{2}^{T}\end{array}\right)\binom{C_{1}}{C_{2}}=0 \Leftrightarrow w_{1}^{T}=-w_{2}^{T} C_{2} C_{1}^{-1}$ thus $w_{2}^{T}\left(-\mathrm{C}_{2} \mathrm{C}_{1}^{-1} \mathrm{I}\right)\binom{\mathrm{C}_{1}}{\mathrm{C}_{2}}=0$.
With identification: $w^{T}=w_{2}^{T}\left(-C_{2} C_{1}^{-1} I\right) \Leftrightarrow w=\binom{-\left(C_{1}^{-1}\right)^{T} C_{2}^{T}}{I} w_{2} \Leftrightarrow w=\mathrm{Pw}_{2}$.
Using the new variable w_{2}, the problem $w^{T} C=0 ; \min _{w} \frac{\left\|w^{T} F^{-}\right\|^{2}}{\left\|w^{T} F^{+}\right\|^{2}}$ becomes :

$$
\min _{w} \frac{\left\|w^{T} F^{-}\right\|^{2}}{\left\|w^{T} F^{+}\right\|^{2}}=\min _{w} \frac{w^{T} F^{-}\left(F^{-}\right)^{T} w}{w^{T} F^{+}\left(F^{+}\right)^{T} w}=\min _{w_{2}} \frac{w_{2}^{T} P^{T} F^{-}\left(F^{-}\right)^{T} P w_{2}}{w_{2}^{T} P^{T} F^{+}\left(F^{+}\right)^{T} P w_{2}}=\min _{w_{2}} \frac{w_{2}^{T} \tilde{A} w_{2}}{w_{2}^{T} \tilde{B} w_{2}}
$$

where $\tilde{\mathrm{A}}=\mathrm{P}^{\mathrm{T}} \mathrm{F}^{-}\left(\mathrm{F}^{-}\right)^{\mathrm{T}} \mathrm{P}$ and $\tilde{\mathrm{B}}=\mathrm{P}^{\mathrm{T}} \mathrm{F}^{+}\left(\mathrm{F}^{+}\right)^{\mathrm{T}} \mathrm{P}$.
Since the small eigenvalue λ of the pair ($\widetilde{A}, \widetilde{B}$) is the minimal of the criteria, the corresponding eigenvector w_{2} is the solution of the optimization problem. Find λ, such that $(\tilde{\mathrm{A}}-\lambda \tilde{\mathrm{B}}) \mathrm{w}_{2}=0$. From w_{2} and P deduce w and the parity

$$
\begin{array}{ll}
& p=w^{T} \underline{y} \\
\text { relation: } & p=w^{T}\left(F^{-} F^{+}\right)\binom{d^{-}}{d^{+}} \text {That conclude the proof. }
\end{array}
$$

