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TP 3: PARITY SPACE APPROACH 

Objective: Build a bank of residuals in order to detect and isolate the fault sensor 

1 SENSOR FAULT DETECTION AND ISOLATION FOR A BOILER SYSTEM EXCHANGER: 

PARITY SPACE APPROACH 

Theoretical study 

Consider the following boiler system exchanger 

 

 

 

 

 

 

 

 

 

The variables are: 

• Tc :  output water temperature at the boiler °C 

• Tp :  output water temperature of the primary circuit of the exchanger   °C 

• Ts : output water temperature of the second circuit of the exchanger  °C 

• Qg :  gas flow m3/h 

• Qp :  water flow of the primary circuit of the exchanger l/h 

• Qs:  water flow of the second circuit of the exchanger l/h 

 

The state of the system is desbribed by the following relation : 

 ( ) ( ) ( ) ( )( )Tspc kTkTkTkx =  

the control inputs by : 

 ( ) ( ) ( ) ( ) ( )( )1512 −−−−= kQkQkQkQku sppg  

And the output by :  
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The matrices A, B and C are given by : 
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B , C = I3 

Using a identification process, web obtain the matrices A and B 
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1.1 Parity space 

• Without increasing the time k, how many parity equations can be deduced? 

• Gives the parity equations with a minimum horizon of observation, to limit the detection delays. 

• Gives the fault location decision table, each sensor fault alarm with the logic decision. 
• Using matab/simuling gives the implementation solution 

 

2 STATIC PARITY SPACE WITH NON PERFECT DECOUPLING 

Consider the static output relation: 

 ( ) ( ) ( ) ( )kFdkkCxky +ε+=  

where nRx ∈ , mRy∈  and pRd ∈  . 

y(k) is the output measurement,  x(k) the state variable, d(k) the fault vector to be detected and  ε(k) the noise 

measurement. Matrices C and F are known with appropriate dimension.   

Assumption:  m > n for a redundancy information existence. 

 

We will find a parity vector sensitive to p-1 defaults and insensitive to di which represent the ith component of d. 

This leads to explain the measurement vector in the form: 

  ( ) ( ) ( ) ( ) ( )kdFkdFkkCxky −−++ ++ε+=  

where d+ are d- are respectively the sensitive and insensitive faults.  F + et F – are the associated matrices. 

2.1 Numerical Application:  

Consider the following system: 
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• Find the kernel w with the optimization problem described bellow.  Give wTF
-
 and wTF+. 

• Check the products wTC, wTF
-
 and wTF+ and conclude. 
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Solution:  The problem is reduced to find a matrices W such that  

( ) 0=−FCW   (1) 

where the parity vector is given by : ( ) ( ) ( )kdWFkWkp +++ε=  

 

The exact solution W of (1) holds if and if the line rank of (C F-) is deficient.  If not the following optimization 

problem can be used: 
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       remark: max(f(x)) = - min(-f(x)) example f(x) = x2-2 

 

Explanation  

Consider 
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C  where C1 is of full rank. The constraints wTC = 0 is true by using the following changement : 
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Using the new variable w2, the problem 
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where ( ) PFFPA
~ TT −−=  and ( ) PFFPB

~ TT ++= . 

Since the small eigenvalue λ of the pair ( B
~

,A
~

) is the minimal of the criteria, the corresponding eigenvector w2 is the 

solution of the optimization problem.  Find λ, such that ( ) 02 =λ− wB
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. From w2 and P deduce w and the parity 
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 That conclude the proof. 


