Department : AUTOMATIQUE

Damien KOENIG

2023 : Fault Diagnosis

TP 3: PARITY SPACE APPROACH

Objective: Build a bank of residuals in order to detect and isolate the fault sensor

1 SENSOR FAULT DETECTION AND ISOLATION FOR A BOILER SYSTEM EXCHANGER: PARITY SPACE APPROACH

Theoretical study

Consider the following boiler system exchanger

The variables are:

•	T_c :	output water temperature at the boiler	°C
•	T_p :	output water temperature of the primary circuit of the exchanger	°C
•	Ts :	output water temperature of the second circuit of the exchanger	°C
•	Q_g :	gas flow	m³/h
•	Q_p :	water flow of the primary circuit of the exchanger	l/h
•	Q _s :	water flow of the second circuit of the exchanger	l/h

The state of the system is desbribed by the following relation :

$$\mathbf{x}(\mathbf{k}) = (\mathbf{T}_{c}(\mathbf{k}) \mathbf{T}_{p}(\mathbf{k}) \mathbf{T}_{s}(\mathbf{k}))^{\mathrm{T}}$$

the control inputs by :

$$u(k) = (Q_g(k-2) Q_p(k-1) Q_p(k-5) Q_s(k-1))$$

And the output by :

$$y(k) = \begin{pmatrix} T_c(k) & T_p(k) & T_s(k) \end{pmatrix}^T$$

The matrices A, B and C are given by :

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & 0 & a_{33} \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} b_{11} & 0 & b_{13} & 0 \\ 0 & b_{22} & 0 & b_{24} \\ 0 & b_{32} & 0 & b_{34} \end{bmatrix}, \quad \mathbf{C} = \mathbf{I}_3$$

Using a identification process, web obtain the matrices A and B

	0.9494	0.0718	0		0.0557	0	-0.0068	0]
A =	0.2363	0.5801	0	B =	0	0.0329	0	-0.0112
	0.2388	0	0.5483		0	0.0132	0	-0.0429

1.1 Parity space

- Without increasing the time k, how many parity equations can be deduced?
- Gives the parity equations with a minimum horizon of observation, to limit the detection delays.
- Gives the fault location decision table, each sensor fault alarm with the logic decision.
- Using matab/simuling gives the implementation solution

2 STATIC PARITY SPACE WITH NON PERFECT DECOUPLING

Consider the static output relation:

 $y(k) = Cx(k) + \varepsilon(k) + Fd(k)$

where $x \in R^n$, $y \in R^m$ and $d \in R^p$.

y(k) is the output measurement, x(k) the state variable, d(k) the fault vector to be detected and $\epsilon(k)$ the noise measurement. Matrices C and F are known with appropriate dimension.

Assumption: m > n for a redundancy information existence.

We will find a parity vector sensitive to p-1 defaults and insensitive to d_i which represent the ith component of d.

This leads to explain the measurement vector in the form:

 $y(k) = Cx(k) + \varepsilon(k) + F^{+}d^{+}(k) + F^{-}d^{-}(k)$

where d^+ are d^- are respectively the sensitive and insensitive faults. F + et F - are the associated matrices.

2.1 Numerical Application:

Consider the following system:

	(1 2 1)			(1	2			(1)
	102			1	2			0
C =	111	,	$F^- =$	0	0	,	$F^+ =$	3
	101			2	5			1
	202			0	1)			(1)

- Find the kernel w with the optimization problem described bellow. Give w^TF⁻ and w^TF⁺.
- Check the products $w^{T}C$, $w^{T}F^{-}$ and $w^{T}F^{+}$ and conclude.

Solution: The problem is reduced to find a matrices W such that

$$W(C F^{-}) = 0$$
⁽¹⁾

where the parity vector is given by : $p(k) = W\varepsilon(k) + WF^{+}d^{+}(k)$

The exact solution W of (1) holds if and if the line rank of (C F) is deficient. If not the following optimization problem can be used:

$$\begin{cases} w^{\mathrm{T}}C = 0\\ \min_{w} \frac{\left\|w^{\mathrm{T}}F^{-}\right\|^{2}}{\left\|w^{\mathrm{T}}F^{+}\right\|^{2}} & \text{remark: } \max(f(x)) = -\min(-f(x)) \text{ example } f(x) = x^{2}-2\end{cases}$$

Explanation

Consider $C = \begin{pmatrix} C_1 \\ C_2 \end{pmatrix}$ where C1 is of full rank. The constraints $w^T C = 0$ is true by using the following changement : $w = Pw_2$

where $P = \begin{pmatrix} -(C_1^{-1})^T C_2^T \\ I \end{pmatrix}$.

$$\underline{\operatorname{Proof}}: w^{T}C = 0 \Leftrightarrow \begin{pmatrix} w_{1}^{T} & w_{2}^{T} \end{pmatrix} \begin{pmatrix} C_{1} \\ C_{2} \end{pmatrix} = 0 \Leftrightarrow w_{1}^{T} = -w_{2}^{T}C_{2}C_{1}^{-1} \text{ thus } w_{2}^{T} \begin{pmatrix} -C_{2}C_{1}^{-1} & I \end{pmatrix} \begin{pmatrix} C_{1} \\ C_{2} \end{pmatrix} = 0$$

With identification: $\mathbf{w}^{\mathrm{T}} = \mathbf{w}_{2}^{\mathrm{T}} \left(-\mathbf{C}_{2}\mathbf{C}_{1}^{-1} \ \mathbf{I} \right) \Leftrightarrow \mathbf{w} = \left(\begin{array}{c} -\left(\mathbf{C}_{1}^{-1}\right)^{\mathrm{T}} \mathbf{C}_{2}^{\mathrm{T}} \\ \mathbf{I} \end{array} \right) \mathbf{w}_{2} \Leftrightarrow \mathbf{w} = \mathbf{P}\mathbf{w}_{2}.$

Using the new variable w₂, the problem w^TC = 0; $\min_{w} \frac{\left\|w^{T}F^{-}\right\|^{2}}{\left\|w^{T}F^{+}\right\|^{2}}$ becomes :

$$\min_{\mathbf{w}} \frac{\left\|\mathbf{w}^{\mathrm{T}}\mathbf{F}^{-}\right\|^{2}}{\left\|\mathbf{w}^{\mathrm{T}}\mathbf{F}^{+}\right\|^{2}} = \min_{\mathbf{w}} \frac{\mathbf{w}^{\mathrm{T}}\mathbf{F}^{-}\left(\mathbf{F}^{-}\right)^{\mathrm{T}}\mathbf{w}}{\mathbf{w}^{\mathrm{T}}\mathbf{F}^{+}\left(\mathbf{F}^{+}\right)^{\mathrm{T}}\mathbf{w}} = \min_{\mathbf{w}_{2}} \frac{\mathbf{w}_{2}^{\mathrm{T}}\mathbf{P}^{\mathrm{T}}\mathbf{F}^{-}\left(\mathbf{F}^{-}\right)^{\mathrm{T}}\mathbf{P}\mathbf{w}_{2}}{\mathbf{w}_{2}^{\mathrm{T}}\mathbf{P}^{\mathrm{T}}\mathbf{F}^{+}\left(\mathbf{F}^{+}\right)^{\mathrm{T}}\mathbf{P}\mathbf{w}_{2}} = \min_{\mathbf{w}_{2}} \frac{\mathbf{w}_{2}^{\mathrm{T}}\widetilde{\mathbf{A}}\mathbf{w}_{2}}{\mathbf{w}_{2}^{\mathrm{T}}\widetilde{\mathbf{B}}\mathbf{w}_{2}}$$

where $\widetilde{A} = P^T F^- (F^-)^T P$ and $\widetilde{B} = P^T F^+ (F^+)^T P$.

Since the small eigenvalue λ of the pair (\tilde{A} , \tilde{B}) is the minimal of the criteria, the corresponding eigenvector w_2 is the solution of the optimization problem. Find λ , such that $(\tilde{A} - \lambda \tilde{B})w_2 = 0$. From w_2 and P deduce w and the parity

 $\begin{array}{l} p = w^{T} \underline{y} \\ \text{relation:} \\ p = w^{T} \Big(F^{-} \ F^{+} \begin{pmatrix} d^{-} \\ d^{+} \end{pmatrix} \end{array} \textbf{That conclude the proof.}$