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Technical Notes and Correspondence_______________________________

Unknown Input Proportional Multiple-Integral Observer
Design for Linear Descriptor Systems: Application

to State and Fault Estimation

D. Koenig

Abstract—In this note, the problem of observer design for linear de-
scriptor systems with faults and unknown inputs is considered. First,
it is considered that the fault vector function is � times piecewise
continuously differentiable. If the �th time derivative of is null, then �

integral actions are included into a Luenberger observer, which is designed
such that it estimates simultaneously the state, the fault, and its finite
derivatives face to unknown inputs. Second, when the fault is not time
piecewise continuously differentiable but bounded (like actuator noise)
or �th time derivative of fault is not null but bounded too, a high gain
observer is derived to attenuate the fault impact in estimation errors. The
considered faults may be unbounded, may not be determinist, and faults
and unknown inputs may affect the state dynamic and plant outputs.
Sufficient conditions for the existence of such observer are given. Results
are illustrated with a differential algebraic power system.

Index Terms—Descriptor systems, proportional–integral (PI) observer,
robustness.

I. INTRODUCTION

Descriptor systems are very sensitive to slight input changes [4], [5]
and the presence of unknown inputs (UI) is very detrimental to the de-
sign of observers. However, few results have been presented to design
observers in the case of UI descriptor systems. In [7], assuming that
the number of UI is strictly less than the number of measurements,
a generalized Sylvester equation was used to develop a procedure for
the design of a reduced-order UI observer. While in [2], an equivalent
condensed form to design an UI observer was introduced, however the
design procedure requires square singular systems, free UI measure-
ments and regularity conditions.

In this note, an unknown input proportional multiple-integral ob-
server (UIPMIO) is designed which achieves a robust state and fault
estimation face to UI and bounded uncertain parameters. First, it is as-
sumed that the fault f(� ) is of the following form:

f(�) = D0 +D1� +D2�
2 + � � �+D�s�1�

�s�1 (1)

where the �sth time derivative of f is null (i.e., f (�s) = 0) and Di (i =
0; 1; 2 . . . �s � 1) are unknown constant vectors. Clearly, a fault de-
scribed as (1) may be unbounded.

Second, when the fault (or one component) is not time piecewise
continuously differentiable but bounded or that f (�s) is not equal to zero
(or only one component) but bounded too, a high gain observer is de-
signed, in Section III-B, that attenuates the fault impact on estimation
errors. As in [7], the considered systems are in general form (i.e., rect-
angular). However, contrary to [7], the proposed observer allows robust
state estimation in presence of parameters variations and fault estima-
tion, filters the actuators noises and the number of UI may be up to the
number of measurements. The main contributions of the note are dis-
cussed and illustrated, respectively, in Sections IV and V.
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II. PROBLEM FORMULATION AND MAIN RESULTS

Consider the linear time-invariant descriptor system

E
� _x =A

�

x +B
�

u+ F
�

ww + F
�

f f (2)
y
� =C

�

x+G
�

ww +G
�

ff

where x 2 n,u 2 k,w 2 q , f 2 s, and y� 2 p denote the state
vector, the control input vector, the unknown input vector, the unknown
fault vector, and the output vector, respectively. E�, A� 2 m�n,
B� 2 m�k , F �w 2 m�q , F �f 2 m�s, C� 2 p�n, G�w 2 p�q ,
and G�f 2

p�s are known constant matrices.
Let r := rankE� � n and without loss of generality, assume that

measurements are linearly independent, i.e., rank [C� G�w G�f ] =
p, and that UI and faults are also linearly independent, i.e.,

rank
F �w F �f

G�w G�f
= q + s (3)

with m + p � q + s. Now, since rankE� = r, there exists a regular
matrix P such that (2) is restricted system equivalent (r.s.e) to [7]

E _x =Ax +Bu+ Fww + Fff (4)
y =Cx+Gww +Gff

where

PE
� =

E

0
PA

� =
A

A1
PB

� =
B

B1

PF
�

w =
Fw

Fw
PF

�

f =
Ff

Ff

y =
�B1u

y�
2

t
C =

A1

C�
2

t�n

Gw =
Fw

G�w
2

t�q
Gf =

Ff

G�f
2

t�s

in which E 2 r�n, rankE = r and t = m+ p� r.
In [7], the proposed unknown inputs proportional observer (UIPO)

exists for system (4) if and only if (iff) there exists at least one distur-
bance free measurement and no fault f (i.e., t > rankGw and f = 0,
see case 4.2 in Section IV). In order to relax these previous assump-
tions and to attenuate the bounded fault impact on estimation errors
(for instance, when f (�s) 6= 0 or f is not determinist but bounded,
see Section III-B), the following augmented system is considered, with
_xI = y:

�E _�x = �A�x + �Bu+ �Fww + �Fff (5)
�y = �C�x + �Gww + �Gff

where

�y =
yI =

�

0
yd� = CI �x

y = �C�x +Gww +Gff
2

�t

�x = [ xT xTI ]T 2 �n (6)

�E =
E 0

0 It
�B =

B

0
�Fw =

Fw

Gw

�A =
A 0

C 0
2

�r��n �C =
CI

�C
2

�t��n

�Ff =
Ff

Gf

�Gw =
0

Gw

�Gf =
0

Gf

(7)

CI = [ 0 It ] �C = [C 0 ] 2 t��n
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and �n = n + t, �r = r + t, �t = 2t. Obviously

rank
�Fw �Ff
�Gw

�Gf

= rank [ �Fw �Ff ] = q + s (8)

iff (3) holds with �r � q + s , m + p � q + s.
Consider the proportional multiple-integral observer for (5) de-

scribed by

_z =�z +KpyI +Kp �y + T �Bu+ T �Ff �Kp
�Gf f̂�s

_̂
f�s =K

�s
I yI � CI �̂x + f̂�s�1

...
_̂
f2 =K

2
I yI � CI �̂x + f̂1 (9)

_̂
f1 =K

1
I yI � CI �̂x

�̂x = z +N �y �N �Gf f̂�s

x̂ = [ In 0 ] �̂x

where z, �x, �̂x 2 �n, x̂ 2 n, f̂i 2 s (i = 1; 2 . . . �s) and �,Kp,Kp ,
T , N and Kj

I (j = 1 : �s) are constant matrices of appropriate dimen-
sions, which must be determined such that x̂ and f̂i (i = 1; 2 . . . �s)
asymptotically converge to x and f (�s�i) respectively. In other words
f̂i (i = 1; 2 . . . �s) is an estimation of the (�s � i)th derivative of the
fault f in the form (1), which implies that f̂�s is an estimation of f .

Lemma 1: The �n + s�s th-order UIPMIO(9) asymptotically es-
timates x and f (�s�i) (i = 1; 2 . . . �s) for any initial conditions �x(0),
z(0), f(0), f̂i(0) (i = 1; 2 . . . �s) and u(t), �y(t),w(t) iff the following
conditions hold:

1) ~A � ~K ~C is Hurwitz;
2) T �E + N �C = I�n;
3) T �Fw = 0;
4) N �Gw = 0;
5) Kp = Kp + N �GfK

�s
I ;

6) � = T �A � KpCI ;
7) Kp = �N ;

where

~A =

T �A T �Ff �N �Gf 0 . . . 0

0 0 Is 0 . . . 0

0 0 0 Is
. . .

...
...

. . .
. . .

. . . 0

0 0 Is

0 . . . 0 0s�s

(10)

~K = [KT
p K�s

I . . . K2
I K1

I ]
T

~C = [CI 0 . . . 0 ] :

Proof: It can be straightforwardly deduced from following Sec-
tion III-A and is omitted.

The unknown matrices ~K;T;N;Kp; � and Kp are deduced from
algorithm 1 given in Section III-A.

III. OBSERVER DESIGN

The following section, is divided into two subsections. The main
section is Section III-A, where under f (�s) = 0 the observer (9) for
system (5) is designed and its existence and stability conditions are
given. Under a bounded fault f (�s), the observer (9) for system (5) is
designed by choosing a reasonable high gain observer (which is derived
from the UIPMIO), it is presented in Section III-B.

A. UIPMIO Design

Defining the fault estimation error efi = f (�s�i)� f̂i (i = 1; 2 . . . �s)
and the state estimation error �e = �x � �̂x. Assume that (2) and (4) in
Lemma 1 hold true, then when the observer (9) is applied to system (5)
the state estimation error �e becomes

�e = T �E�x� z �N �Gfef : (11)

From (11), (5), and (9), the following estimation error dynamics are
obtained:

_�e =��e+ T �A� �T �E �KpCI �Kp
�C �x

+ �N �Gfef + T �Ff �Kp
�Gf ef

�N �Gf _ef + T �Fw �Kp
�Gw w (12)

_ef = f
(�s�(�s�1))

�
_̂
f�s = �K�s

ICI�e+ ef (13)

_ef = f
(�s�(�s�2))

�
_̂
f�s�1 = �K�s�1

I CI�e+ ef

... (14)

_ef = f
(�s�1)

�
_̂
f2 = �K2

ICI�e+ ef

_ef = f
(�s)
�

_̂
f1 = �K1

ICI�e

since f (�s) = 0.
Substitute (13) in (12) and from conditions 2)–7) of Lemma 1, the

estimation error dynamic (12) becomes

_�e = T �A �Kp CI �e+ T �Ffef �N �Gfef : (15)

Let ~e = [ �eT eTf eTf . . . eTf eTf ]T from (10), (15), (13),
and (14), it comes

_~e = ~A � ~K ~C ~e: (16)

The system dynamics ~A � ~K ~C can be stabilized by selecting the

gain ~K thanks to the detectability of the pair ( ~A; ~C ).
In the sequel, it is shown how to find matrix [T N ] such that con-

straints 2)–4) of lemma 1 are satisfied. For that, rewrite 2)–4) of lemma
1 in an augmented matrix equation as

[T N ] � = 
 (17)

where � =
�E �Fw 0
�C 0 �Gw

and 
 = [ I�n 0 0 ]. A solution of

(17) exists if [15] rank
�



= rank� which is equivalent to

rank
�E �Fw 0
�C 0 �Gw

= �n+ rank �Fw + rank �Gw: (18)

Then, under (18), the general solution of (17) is

[ T N ] = 
�+ + Z I�r+�t ���+ (19)

where �+ is the generalized inverse matrix of � and Z is an arbitrary
matrix, fixed by the designer such that the matrix T is of maximal rank,
i.e., m + p � q (for details, see [6]).

Now, for (5), sufficient conditions for the existence of the observer
(9) according to Lemma 1 can be given.
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Theorem 1: Under (8) and rankT = m + p � q, there exists an
UIPMIO (9) for system (5) satisfying conditons 1)–7) of Lemma 1 iff
the following existence conditions are fulfilled:

(18) and

rank

pI�n � T �A �T �Ff N �Gf 0 . . . 0

0 pIs �Is 0
...

0 pIs �Is
. . .

0
. . .

. . . 0
...

. . .
. . . �Is

0 0 pIs

CI 0 . . . 0 0
= �n+ s�s 8 (p) � 0:

(20)

Proof: It is straightforwardly deduced from the above observer
design and is omitted.

Conditions of Theorem 1 can be given directly using the matrices of
the original system (2) by the following lemma.

Lemma 2: Under (3) there exists for system (2) an UIPMIO (9) ac-
cording to Lemma 1 iff the following existence conditions are fulfilled:

rank

E� A� F �w 0

0 E� 0 F �w

0 C� G�w 0

0 0 0 G�w

=n+ rank
E� F �w

0 G�w

+ rank
F �w

G�w
(21)

rank
pE� �A� �F �f �F �w

0 pIs 0

C� G�f G�w

=n+ rank
F �f F �w

G�f G�w

8 (p) � 0: (22)

Proof: See the Appendix.

1) Recall that (21) was established in [9]. For E� = In, (21) gen-
eralizes the UI decoupled condition generally assumed in UI ob-
server design, in fact (21) can be rewritten as

rank
In 0 0

C� �Ip 0

0 0 Iq

In 0 F �w

C� G�w 0

0 0 G�w

= n+ rankG�w + rank
F �w

G�w

, rank
G�w C�F �w

0 G�w

= rankG�w + rank
F �w

G�w

which is equivalent to condition (24) in [10].
2) For F �w = G�w = G�f = 0, (22) generalizes the R-detectability

condition (10) in [11].

The procedure for designing the UIPMIO can be now summarized.
Algorithm 1: If conditions (3), (21), and (22) hold, then an UIPMIO

(9) for system (2) or (5) exists. First, system (2) is transformed into
(5) and [ T N ] is computed from (19). Since the pair ( ~A; ~C ) is
detectable, the observer gain ~K (i.e., Kp ; K�s

I ; K
�s�1
I ; . . .K1

I ) is de-
termined such that ~A � ~K ~C is Hurwitz and from conditions 5)–7) of
Lemma 1, Kp; � and Kp can be respectively deduced.

B. High-Gain Observer Design

Under the hypothesis that the �sth time derivative of fault f is
bounded (i.e., f (�s) � Is, where  2 <1) a high gain UIPMIO (9)

that attenuates the f (�s) fault impact in the estimation error (23) can be
designed for system (5).

In this case, the estimation errors (15), (13), and (14) become

_~e = ~A � ~K ~C ~e+ ~Fff
(�s) (23)

where ~A, ~K , ~C are defined by (10) and

~Ff =
0(�n+s(�s�1))�s

Is
:

Since the fault term f (�s) in (23) is not affected by the observer gain
a reasonably high gain ~K , (or only K1

I ) such that the stabilizing term
prevails over the fault term ~Fff

(�s), can be chosen as it will be shown in
the illustrative example (see Section V). More precisely, let ~K = � ~K0

with � 2 <1, then (23) becomes

_~e

�
=

~A

�
~e� ~K0

~C~e+
~Ff
�
f
(�s)
: (24)

Under a bounded f (�s) and an observable pair ( ~A; ~C), it exists ~K such
that (23) and (24) are stable. Therefore, with a high gain ~K (i.e., � !
1), it follows that (24) can be approximated by

~C~e = 0: (25)

Differentiating (25) and using (23), it comes

~C ~A~e = 0

since ~C~e = 0 and ~C ~Ff = 0 (by construction). In same way, under the
observability of the pair ( ~A; ~C ), ~C ~Ai~e = 0, for i = 2 . . . �n+s�s�1.
It follows that ~e ! 0.

In addition, when some parameters in model (2) are uncertain, it is
well known that they can be summarized as UI and/or faults acting on
the system (see case 5.1 in the following example). Since the UI do not
affect the state estimation error and the fault term is not affected by the
observer gain, it follows that the proposed high-gain observer is robust
in presence of uncertain bounded parameters.

The procedure for designing the high-gain observer (9) for systems
(2) or (5) can be summarized by algorithm 1, where the reasonable high
gain ~K (or onlyK1

I ) is chosen a posteriori by the designer. Even if, one
or more components of f are not time piecewise continuously differen-
tiable but bounded, the proposed observer can always be implemented.
This is illustrated later in Section V, case 5.2.

IV. DISCUSSION

Generally speaking proportional integral observers present many ad-
vantages: robustness face of uncertain parameters [11]; accurate pa-
rameter estimation [13]; loop transfer recovery (LTR) properties with
exact recovering for � �! 1 [12]; fault detection with disturbance
rejection in steady state [14]. In the following, the performances of the
proposed observer is compared with those obtained with classical ob-
servers in different cases.

Case 4.1: Classical proportional integral observer [11].
Considering the following observer for system (4):

_z =�z +Kpy + TBu+ TFf f̂

_̂
f =KI (y � Cx̂) (26)

x̂ = z +Ny �NGf f̂ :
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Fig. 1. System configuration and state estimation with the dynamic of the observer fixed in the LMI region �D .

Defining both state and fault estimation error e = x�x̂ and ef = f�f̂ ,
respectively. Setting In �NC = TE, NGw = 0 and TFw = 0, the
estimation error dynamics becomes

_e =�e+ � � � �KpGww �KpGff (27)
_ef = �KICe�KIGww �KIGff + _f:

From (27), it can be seen that both UIw and fault f are multiplicated by
thegainsKp andKI . Thenwithhighgains, bothUIand fault amplify the
estimation error (for details, see [1, Sec. III]).Otherwise, if gainsKp and
KI are chosen small in order to attenuate both UI and fault impact, then
the convergenceproperties of the estimation error are affected. So, under
a restricted domain, estimation error tends toward zero iffGw = Gf =
0 (i.e., freemeasurements) and _f = 0 (i.e., constant faults).

Comparing (23) and (27), it can be seen that the fault term f (�s) in
(23) is not affected by the observer gain. Therefore, when the fault f
has the form of (1) under a bounded fault f (�s), the proposed UIPMIO
estimates simultaneously the state x, the fault f and its finite deriva-
tives f (i), (i = 1 : �s � 1). More precisely the fault impact f (�s) on
estimation error �e; ef ; ef ; . . . ; ef is attenuated by chosen a rea-
sonable high gain ~K . In addition, if one or more components of f are
not time piecewise continuously differentiable but bounded, the high
gain UIPMIO (9) estimates the state x, the fault f and finite deriva-
tives f (i) which is illustrated in Section V, case 5.2.

Case 4.2: Unknown inputs proportional observer [7].
For q1 = rankGw with q1 � q < t, system (4) can be rewritten

as [7]:

E _x =�x +Bu+ F11y1 + F12w2 + (Ff � F11Gf )f

y1 =C11x+ w1 +Gf f (28)

y2 =C12x+Gf f

where [GT
f GT

f ]T = UGf . As with case 4.1, the observer gains
L1 and L2 (which depend on stabilizing gain Z) are affected by the
fault term f in the dynamic state estimation error [7]. Otherwise for
Gf = 0 (i.e., Gf = Gf = 0) and Ff 6= 0, the associated residual
r = ŷ2 � y2 = C12e = C12M(z � TEx) in [7] is necessarily
decoupled of the fault Fff since C12M = 0, thus a fault f affecting
directly the dynamic state can not be detected.

For nonsingular Gw () q = t), the UIPO (4) proposed in [7]
for system (28) cannot be designed since measurement y2 is always
disturbed by the UI (the same for residual r).

V. APPLICATION

Based on [8] and [16], a machine infinite bus system shown in
Fig. 1(a) will be used to illustrate the estimation performances of the
proposed observers. The dynamic behavior of the system is governed
by the swing equations of the three machines G1; G2 and G3. The

fifth node introduces the algebraic behavior. The corresponding linear
model is described as follows:

_x1 =x1 _x2 = x2 _x3 = x6

_x4 =
1

M1
(u1 � Y12V1V2 (x1 � x2))

�
1

M1
(Y15V1V5 (x1 � x7) +D1x4)

_x5 =
1

M2
(u2 � Y21V2V1 (x2 � x1)) (29)

�
1

M2
(Y25V2V5 (x2 � x7) +D2x5)

_x6 =
1

M3
(u3 � Y34V3V1x3)

�
1

M3
(Y35V3V5 (x3 � x7) +D3x6)

0 =Pch � Y51V5V1 (x7 � x1)� Y52V5V2 (x7 � x2)

� Y53V5V3 (x7 � x6)� Y54V5V1x7
where x1 = �1, x2 = �2, x3 = �3, and x7 = �5 are the generator
angles and x4 = !1, x5 = !2, and x6 = !3 are the generator speeds.
Themechanical power u1 = P1, u2 = P2, and u3 = P3 have the same
values P1 = P2 = P3 = 0:1 pu and the nominal values of inertiaM1,
M2, M3, of damping D1, D2, and D3, of admittance Y15, Y25, Y35,
Y34, and Y45 and of potential V1, V2, V3, V1, and V5 are shown in

M1 = 0:014 M2 = 0:026 M3 = 0:02 D1 = 0:057

D2 = 0:15 D3 = 0:11 Y15 = 0:5 Y25 = 1:2

Y35 = 0:8 Y45 = 1 Y34 = 0:7 Y12 = 1:

Vi = 1 i = 1; 2; 3;1; 5

It is assumed that the only available measurements are the generator
angles �1, �2, �3, and �5. In the sequel, for each UIPMIO design, the
matrix Z = 0 and the dynamic of each observer is defined in a LMI
region �Di = fai + jb 2 C; i = 1 : 3g with [3]

f�10 < a1 < �2:5g f�50 < a2 < �25g f�100 < a3 < �80g:

Case 5.1: Parameters variation and UI.
Considering system (29) affected by the unknown load Pch =

0:2 sin 5t and an uncertain admittance

Yij = Yij +4Yij (30)

where 4Yij = �ij sin(!ijt) and j�ij j < 0:3, j!ij j < 2 rd=s, i =
1 : 5, j = 1 : 5. The model (2) is also described by w = Pch and

F �f f =
0

I4
4A�x with �s = 0. Fig. 1(b) shows that the UIPMIO

proposed is unbiased although the UIPO [7] is biased.
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Fig. 2. Bode transfert functions and fault estimation performance with the dynamic of the UIPMIO fixed in the LMI region �D , �D and �D respectively.

Case 5.2: Simultaneously constant fault actuator f1, unbounded
nonlinear fault actuator f2, normally distributed random fault actuator
f3 and UI.

The model (2) is also described by w = Pch, F �

f = B�,

f(� ) = ( f1 f2 f3 )
T with f1 =

0; if � < 2

0:1; else
, f2 =

0:1� + 0:2 sin 5� , f3 =
mean = 0

variance = 0:1
, and �s = 2. A satisfactory

estimation is obtained even if constant fault actuator, nonlinear un-
bounded fault actuator and normally distributed random fault actuator
occur simultaneously. Fig. 1(c) shows that the state is well filtered. In
addition, the fault attenuation properties can clearly be observed in
bode transfer function given in Fig. 2(a) while Fig. 2(b) and (c) show
that when the observer gain (or bandwidth of the observer) is increased
the steady-state fault estimation error decreases.

VI. CONCLUSION

The existence conditions of a full-order nonsingular UIPMIO for de-
scriptor systems subject to fault and UI have been given and proved.
The proposed UIPMIO rejects or reduces the estimate errors of the
states and the faults of the system. More precisely, if fault f has the
form of (1) under the constraint that the �sth derivative of fault f is null,
the proposed UIPMIO estimates simultaneously the state x, the fault
f and its finite derivatives f (i), (i = 1 : �s � 1) for all UI w(t). Else
if the �sth derivative of the fault f is not null (i.e., f (�s) 6= 0), a high
gain UIPMIO is designed in order to attenuate the impact of f (�s) in the
estimation errors. The existence conditions of the proposed observers
generalize those adopted in [7] for the design of UIPO of free fault
descriptor systems. The proposed observers are robust face to param-
eters variations and in addition they filter the noises. The estimation
performances of the proposed observers has been compared with those
obtained with classical observers in different cases. Results have been
illustrated in simulation.

APPENDIX

In the sequel, it is proved that the two sets of existence conditions
stated in Theorem 1 and Lemma 2 are equivalent.

Proof: (21), (18). For that, the following equivalence

a) (21), rank
E 0 Fw

C Gw 0

0 0 Gw

(31)

=n+ rankGw + rank
Fw

Gw

b) (31), (18)

are, respectively, proved.

a) Define the regular matrices

P1 =

P 0 0

0 P 0

0 0 I2p

P2 =
P 0

0 Ip

then

(21), rankP1

E� A� F �

w 0

0 E� 0 F �

w

0 C� G�

w 0

0 0 0 G�

w

=n+ rankP2
E� F �

w

0 G�

w

+ rankP2
F �

w

G�

w

, (31)

since E is of full-row rank.
b) Substituting matrices (7) and �n = n + t in (18), (18), (31) is

directly obtained.
Proof: (22), (20). For that, the following equivalence:

1) (22), rank
pE �A �Ff �Fw

0 pIs 0

�C �Gf �Gw

=n+ rank
Ff Fw

Gf Gw

8 (p) � 0 (32)

2) (32), rank
p �E � �A � �Ff � �Fw

0 pIs 0
�C �Gf

�Gw

= �n+ rank [ �Ff �Fw ] (33)

3) (33), (20)

are, respectively, proved.

1) Define the nonsingular matrix

P3 =

P 0 0

0 Is 0

0 0 �It

then

(22), rankP3

pE� � A� �F �

f �F �

w

0 pIs 0

C� G�

f G�

w

=n+ rankP2
F �

f F �

w

G�

f G�

w

8 (p) � 0

, (32)

2) Substitute matrices (7) and �n = n + t in (33), it comes imme-
diately that (33),(32).
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3) Define the following condition:

rank
pI�n � T �A �T �Ff + pN �Gf

0 pIs

CI 0

= �n+ rank �Ff

8 (p) � 0 (34)

which is equivalent to

rank
�T �A �T �Ff
CI 0

= �n+ rank �Ff ; p = 0
(35)

and rank
pI�n � T �A

CI

= �n 8 (p) > 0:

Since (35) is obviously equivalent to (20), the problem is reduced to
prove that (33) is equivalent to (34).

From (18), matrix
�E �Fw
�C 0

is of full column rank, hence there

exists a full-row rank matrix
T N

V1 V2
with T of maximal rank (i.e.,

m + p � q) such that

T N

V1 V2

�E �Fw
�C 0

=
I�n 0

0 Iq
: (36)

Let [ V21 V22 ] = V2 and define the full-row rank matrix

P4 =

T N 0 0 0

V1 V2 0 �pV21 �pV22
0 0 Is 0 0

0 0 0 It 0

then, from (36), it comes

(33) , rankP4

p �E � �A � �Ff � �Fw
p �C p �Gf p �Gw

0 pIs 0
�C �Gf

�Gw

= �n+ rank [ �Ff �Fw ] 8 (p) � 0

, (34)

since rank �Fw = q.
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Delay-Dependent Exponential Stability of Stochastic
Systems With Time-Varying Delay, Nonlinearity,

and Markovian Switching

Dong Yue and Qing-Long Han

Abstract—The problem of delay-dependent stability in the mean square
sense for stochastic systems with time-varying delays,Markovian switching
and nonlinearities is investigated. Both the slowly time-varying delays
and fast time-varying delays are considered. Based on a linear matrix
inequality approach, delay-dependent stability criteria are derived by
introducing some relaxation matrices which can be chosen properly to lead
to a less conservative result. Numerical examples are given to illustrate the
effectiveness of the method and significant improvement of the estimate of
stability limit over some existing results in the literature.

Index Terms—Linear matrix inequality (LMI), Markov chain, stability,
Stochastic systems, time delay.

I. INTRODUCTION

Since the introduction of the first model for a jump linear system
(JLS) by Krasovskii and Lidskii [8], the JLS has become more popular
in the area of control and operations research communities. The JLS is
a hybrid system in the form

_x(t) = A(rt)x(t) (1)

where one part of the state x(t) takes value continuously in Rn while
another part of the state rt is a Markov chain taking values in a finite
state set S = f1; 2; . . . ; Ng. One can use the JLS to model different
types of dynamical systems subject to abrupt changes in their struc-
ture, such as failure prone manufacturing systems, power systems and
economics systems etc. In the past decades, the stability and control
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