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�)

qd�2
:

in Fig. 4. In the other two cases (L = 3 and L = 10) Rfun(0) is
negative, meaning that for all R, the bounded system cannot be JIT
with this parameter setting.

VI. CONCLUSION

In this note, we have considered a single part-type, single unreliable
machine production system with a bounded backlog/inventory space
and the part flow into the system modeled as being fluid. The problem
of determining a production control which minimizes an infinite
horizon average backlog/surplus cost in the case of no bounds on the
backlog/inventory space has been extensively studied in the literature
and it has been found that the optimal policy, in many interesting cases,
is a hedging point policy, with the optimal hedging point which can
be analytically computed. In this note, we have considered a limited
backlog and finite inventory space production system, proving the
optimality of the hedging point policy also in this case where a penalty
is incurred for every lost demand. The optimal safety stock has been
given through an implicit equation which can be easily solved through
any numerical method due to its particular structure. An analytical
and a numerical comparison between the optimal hedging point in the
bounded case and in the unbounded case has been reported in the note,
together with the analysis of the effect of the backlog limit and the
demand loss cost parameters on the computed hedging point.
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Robust Fault-Tolerant Control for Descriptor Systems

B. Marx, D. Koenig, and D. Georges

Abstract—A new architecture for fault tolerant controllers is proposed
for the generic class of descriptor systems. It is based on coprime factoriza-
tion of nonproper systems and on the Youla parameterization of stabilizing
controllers. Noticing that the Youla controllers include a so called residual
signal, fault tolerant control is achieved. Nominal control and robust fault
tolerance are addressed separately. Moreover, fault tolerant control can be
improved with a scheme integrating fault diagnosis. The design of the di-
agnosis and fault tolerant control filters reduce to a standard -control
problem of usual state-space system.

Index Terms—Coprime factorization, descriptor systems, robust fault
tolerant control, Youla parameterization.

I. INTRODUCTION

Since systems are more and more complex, fault diagnosis and
fault tolerant control have become challenging problems in the area of
modern control theory; see [1] and [11]. Recently, efforts have been
provided to integrate diagnosis in the controller design; see [12], [15].

In order to take into consideration physical constraints or static re-
lations and more generally impulsive behaviors caused by an improper
transfer matrix, the descriptor formulation (i.e., E _x = Ax + � � �) ap-
pears in many fields of system design and control; see [3] and [8].
Concerning the fault diagnosis problems, few results have been gen-
eralized to the descriptor case. In [11, Ch. 5], fault detection is based
on observers, and unknown input observers are studied in [4]. In [7],
fault detection and isolation is considered in the H1-filtering frame-
work and in [9], diagnosis is performed via coprime factorization of the
nominal plant. However, none of these contributions envisaged fault
tolerant control.

This note aims at generalizing fault tolerant control proposed by [12]
to descriptor systems. Using the Youla parameterization, it is possible
to address the fault diagnosis (FD), the control and the fault tolerant
control (FTC) in distinct steps but in an unified approach. In the Youla
parameterization of the stabilizing controllers [14], an inner signal ap-
pears to be a residual and can be filtered to perform robust fault diag-
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nosis. Moreover, the residual signal can be exploited for FTC by mini-
mizing the output deviation caused by the fault and disturbance signals.
To improve the performance of the FTC system, filters devoted to each
fault (or combination of faults), should be synthesized and the appro-
priate filter is selected online according to the direction of the residual
signal. It is important to note that, although descriptor systems may be
improper, the design of the diagnosis and fault tolerant filters reduces
to standardH1-control for usual systems. Moreover, contrary to most
residual generation or internal model methods, the matrix transfer of
the process is not duplicated in the controller, thus due to the coprime
factorization only proper filters are implemented, which is the major
interest of this approach.

The note is organized as follows. Section II recalls some basics about
descriptor systems and coprime factorization. Fault tolerant control is
tackled in Section III. Before concluding, an example is provided.

II. PRELIMINARIES

In this section, some basics about descriptor systems are reminded,
mainly taken from [3], a particular attention is paid to the coprime fac-
torization which is the core of our approach.

Let us consider a linear time-invariant (LTI) descriptor system sub-
ject to fault and disturbance given by

E _x(t) = Ax(t) +Bu(t) +R1f(t) +E1d(t)

y(t) = Cx(t) +Du(t) +R2f(t) + E2d(t)
(1)

where x 2 n is the descriptor variable, u 2 n is the control input,
y 2 m is the measured output, d 2 n is the disturbance, f 2
n is the fault and E;A;B;C;D;E1; E2; R1, and R2 are known

real constant matrices with compatible dimensions. As discussed in
[5], the unknown vector d(t) in the (1) embraces model uncertainties,
additive perturbation, input, and output multiplicative perturbation and
the vector f(t) stands for dysfunctions, actuator, or sensor faults.

The matrixE may be rank deficient: rank(E) = r � n. The system
(1) has an unique solution, for any initial condition, if it is regular (i.e.,
det (sE � A) 6= 0). Let note q = deg det (sE �A). (1) has q finite
dynamic modes, (n�r) static modes and (r�q) impulsive modes. The
finite modes correspond to the finite eigenvalues of the pencil matrix
(E;A). The system is called stable if and only if the finite modes are
stable, i.e., the finite eigenvalues of (E;A) lie in the open left half-
plane. The impulsive modes may cause impulse terms in the response
and thus are highly undesirable. A system has no impulsive mode and
is said to be impulse free if and only if deg(det(sE�A)) = rank(E).
Since the transfer matrix of any impulse free descriptor system is (non
strictly) proper it can be realized by an usual state-space representation
(A;B;C;D).

A descriptor system is impulse observable (respectively, R-de-
tectable) if and only if it satisfies (2) [respectively, (3)]

rank
ET 0 0

AT ET CT = n+ rank E (2)

rank
sE � A

C
= n

8s 2 with <(s) � 0: (3)

If (2) is verified, there exists a matrix gainL such that the pencil matrix
(E;A+LC) is impulse free. If (3) is verified, the unstable finite eigen-
values of (E;A+LC) can be arbitrarily placed by the matrix gain L.
If (3) is verified for all s, all the finite eigenvalues of (E;A + LC)
can be arbitrarily placed, and the system is called R-observable. Dual
notions are defined for the controllability [3]. If (E;A) is stable and
impulse free, it is called admissible.

In the remainder of this note, the only necessary assumptions are the
following.

A1) (E;A; C) is impulse observable and detectable.
A2) (E;A;B) is impulse controllable and stabilizable.
A3) (E;A) is regular.

The LTI descriptor system (1) can also be described by y(s) = Gu(s) �
u(s)+Gf(s)�f(s)+Gd(s)�d(s)whereGu(s) = C(sE�A)�1B+
D;Gd(s) = C(sE�A)�1E1+E2, andGf (s) = C(sE�A)�1R1+
R2. A coprime factorization of the system (1) and of a stabilizing con-
troller K0(s) is given by

Gu = NuM
�1

u = ~M�1

u
~Nu (4)

Gf = NfM
�1

f = ~M�1

f
~Nf (5)

Gd = NdM
�1

d = ~M�1

d
~Nd (6)

K0 = UV
�1 = ~V �1 ~U (7)

where the transfer matrices in (4) and (6) should satisfy the following
double Bezout equation:

I 0

0 I
=

~V � ~U

� ~Nu
~Mu

Mu U

Nu V

=
Mu U

Nu V

~V � ~U

� ~Nu
~Mu

: (8)

Let K0(s) be an observer-based feedback controller defined by

E _̂xc = Ax̂c +Bu+ L(Cx̂c +Du� y)

u = F x̂c
(9)

or, equivalently

K0(s) = E;
A+ LC +BF + LDF �L

F 0
(10)

where the matrices L and F ensure the admissibility of (E;A+ LC)
and (E;A + BF ), respectively. The matrices in (4) and (6) can be
defined by [9]

~V � ~U

� ~Nu
~Mu

= E;

A+ LC �(B + LD) L

F I 0

C �D I

(11)

Mu U

Nu V
= E;

A+BF B �L

F I 0

C +DF D I

: (12)

The transfer matrices Nf ; ~Nf ;Mf ; ~Mf ; Nd; ~Nd;Md, and ~Md in (5),
(6), (7) are easily deduced from (11) and (12). Moreover, a key point
is that ~Md = ~Mf = ~Mu = ~M holds. Since the matrices L and F are
chosen such that (E;A+LC) and (E;A+BF ) are admissible, all the
transfer matrices Mk; Nk; ~Mk , and ~Nk are proper for k 2 fu; d; fg.
The impulsive terms in Gu(s); Gf (s), and Gd(s) are caused by their
inverseM�1

k or ~M�1

k , which may be strictly improper. System (1) can
thus be written as

y = ~M�1( ~Nuu+ ~Ndd+ ~Nff): (13)

The set of all stabilizing controllers is given in [13].
Lemma 1: The set of all stabilizing controllers for Gu(s) is given

by K(s) = (MuQ + U)(NuQ + V )�1 or, equivalently, K(s) =
(~V +Q ~Nu)

�1( ~U+Q ~M ), whereQ is an arbitrary proper stable transfer
matrix.
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Fig. 1. Scheme of fault tolerant control.

III. FAULT TOLERANT CONTROL

In this section, an architecture of fault tolerant controllers is pro-
posed for descriptor systems. On the one hand, nominal control per-
formance, such as admissibility and pole placement of the nominal
closed-loop system, are targeted. On the other hand, the deviation from
the nominal response caused by the exogenous inputs d(s) and f(s) is
minimized to achieve fault tolerant control. The proposed controller
structure is depicted in Fig. 1. One should recognize the Youla param-
eterized controller.

This structure is interesting since, from (13), the internal signal, r,
appears to be a residual signal

r(s) = ~M(s)(s)y(s)� ~Nu(s)u(s)

= ~Nf (s)f(s) + ~Nd(s)d(s): (14)

Thus, fault tolerance (FT) aspects can easily be taken into consider-
ation. Moreover, the reference signal “ref” does not impact on the
residual generation. The response of the closed-loop system is given
by (13), where u is defined by

u = ~V �1( ~Uy +Qc( ~My � ~Nuu)) + ref (15)

u = ~V �1( ~Uy +Qc( ~Ndd+ ~Nff)) + ref (16)

combining (13) and (16), the response of the closed-loop system is
given by y = ( ~M � ~Nu

~V 1 ~U)�1( ~Nu ref + (I + ~Nu
~V �1Qc)( ~Ndd+

~Nff)). From (8) and matrix inversion formulas, one can derive that
V = ( ~M � ~Nu

~V 1 ~U)�1 and V (I + ~Nu
~V �1Qc) = V +NuQc, and

then finally obtain

y = V ~Nu ref + (V +NuQc)( ~Ndd+ ~Nff): (17)

From (17), it is clear that, on the one hand, the nominal control perfor-
mances are set by V ~Nu, thus by L and F and, on the other hand, the
fault tolerance is obtained by the appropriate choice of Qc(s). When
no exogenous signal enter the system, the inner loop is inactive since
r(s) = 0. Consequently, the choice of Qc(s) does not affect the nom-
inal performance of the controller. Thus, nominal control and fault tol-
erance are addressed separately.

The controller is not necessary implemented as shown on Fig. 1 since
it involves high order controller. Nevertheless, this formalism is ap-
pealing, not only for the sake of clarity, but also in the case of online
reconfiguration of the controller, whenQc is monitored accordingly to
a fault diagnosis filter (see Section III-C).

A. Nominal Control

It is readily verified that the nominal response corresponds to an ob-
server based controller since

~V �1 ~U = E;
A +BF + LC + LDF �L

F 0
(18)

and the closed-loop response is given by

V ~Nu =
E 0

0 E
;

A +BF �LC �LD

0 A+ LC B + LD

C +DF C D

(19)

where the well-known separation principle holds. The admissibility of
the closed-loop system is secured by A1) and A2), moreover, the finite
dynamics of the closed-loop system can be arbitrarily chosen, provided
(E;A; B) and (E;A; C) areR-controllable andR-observable respec-
tively. The temporal characteristics of the response can be fixed by se-
lecting F andL to ensure pole clustering of the closed-loop system. As
introduced in [2], the concept of LMI region is an efficient tool to de-
scribe every convex region of the complex plane, which is symmetric
with respect to the real axis, by two matrices � and � (e.g., the left
half-plane is defined by � = 0 and � = 1). The LMI characterization
of pole-clustering in LMI region for descriptor systems is treated in
[10], and as a result F and L can be determined by solving strict LMI
in order to ensure the pole clustering of the closed-loop system.

Theorem 1: For a given LMI region D, of the left half-plane de-
fined by � and �, there exist L and F such that the closed-loop system
(19) is D-admissible (i.e., is impulse free and has its finite pole in
D), if and only if there exist symmetric positive definite matrices PF
and PL 2 n�n, and matrices SF and SL 2 (n�r)�(n�r); HF 2
n �(n�r); HL 2

m�(n�r); LF 2
n �(n�r), and LL 2 m�n

such that

�klEPFE
T + �kl(APFE

T +BLFE
T ) +BHFU

T

+ AV SFU
T + �lk EPFA

T + EL
T
FB

T

+ US
T
F V

T
A
T + UH

T
FB

T

1�k;l�p
< 0 (20)

�klE
T
PLE + �kl(AT

PLE + C
T
LLE) + C

T
H

T
L V

T

+ A
T
USLV

T + �lk E
T
PLA +E

T
L
T
LC

+V STLU
T
A+ V HLC

1�k;l�p
< 0 (21)

where the notation M = [Mkl]1�k;l�m means that M is an m �

m block matrix with generic block Mkl. U and V are of full-column
rank and are composed of bases ofKer(E) andKer(ET ), respectively.
Then, F and L are given by

F = (LFE
T +HFU

T )(PFE
T + V SFU

T )�1 (22)

L = (PLE + USLV
T )�T (LLE +HLV

T )T : (23)

Proof: This result is easily deduced from [10, Th. 1].

B. Fault Tolerance

In the absence of any fault and disturbance, the reconfiguration loop
is inactive and does not affect the performance of the nominal closed-
loop system. In the presence of an exogeneous signal, Qc(s) provides
a corrective term in order to compensate the effects of the exogenous
signals. Indeed, it can be seen as an internal model based controller,
with the major difference that ~M(s) and ~Nu(s) are always impulse
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Fig. 2. Equivalent standard H1 control problem.

free, even for impulsive nominal plants. From (17) a natural solution to
FTC problem is to synthesize the parameterQc(s) in order to minimize
theH1-norm of the transfer matrix from d and f to y, thus to minimize
the criterion (24)

Jc = k(V +NuQc)[ ~Nd
~Nf ]k1: (24)

All the factors in (24) are proper and minimizing the criterion Jc re-
duces to themodel matching problem ofminimizing kT1+T2QcT3k1,
where T1; T2, and T3 are given by

T1 =
E 0

0 E

A+BF �LC �LE2 �LR2

0 A+ LC E1 + LE2 R1 + LR2

C +DF C E2 R2

(25)

T2 = E;
A+BF B

C +DF D
(26)

T3 = E;
A+ LC E1 + LE2 R1 + LR2

C E2 R2

: (27)

Since T1; T2, and T3 are impulse free, these transfer matrices can
be realized by usual state-space systems, let note (Ai; Bi; Ci;Di)
a minimal realization of Ti, for i 2 f1; 2; 3g. The minimiza-
tion of Jc can be formulated in the standard H1 framework
as finding the controller Qc that minimizes the H1-norm of
the closed-loop system depicted on Fig. 2, where the system
(Ac; B1c; B2c; C1c; C2c; D11c; D12c; D21c; D22c), is defined by

Ac = diag(A1; A2; A3) B1c = B
T
1 0 B

T
3

T

B2c = 0 B
T
2 0

T

C1c = [C1 C2 0]

C2c = [0 0 C3] D11c = D1 D12c = D2

D21c = D3 and D22c = 0: (28)

The LMI-based solution of [6] can be applied, provided (Ac; B2c; C2c)
is stabilizable and detectable, and provided the direct transfer from the
control input to the measured output is null. These necessary conditions

Fig. 3. Scheme of improved fault tolerant control.

are verified since (E;A+BF ) and (E;A+LC) are admissible, thus
stable, and since D22c = 0, respectively.

Remark 1: A weighting function can be added in the criterion to
enhance the robustness at high frequency or to put an emphasis on a
particular frequency range if the power spectrum of the fault and dis-
turbance is known.

Remark 2: The design of reduced order controller is highly encour-
aged since Ac is a (4r� 4r) matrix. The following algorithm summa-
rizes the fault tolerant control process.

Algorithm 1: To implement the fault tolerant controller

1) solve (20)–(21), to find L and F such that the nominal closed-
loop system is D-admissible;

2) findQc by solving the equivalent standardH1 control problem
for (28);

3) implement the optimally robust fault tolerant controller

u(s) = (~V +Qc
~Nu)

�1(( ~U +Q ~M)y(s) + ~V ref(s)):

C. Improving the FTC Robustness

In the previous scheme, the control filter Qc was designed to obtain
optimal tolerance faced to all the possible faults. Assuming that sev-
eral faults do not occur at the same time, dedicated controllers can be
designed. nf control filtersQci are synthesized by minimizing the cri-
terion

Jci = k(V +NuQci)[ ~Nd
~Nfi]k1 (29)

where ~Nfi is the ith column of ~Nf . Another filter, dedicated to the
fault-free case, is determined by minimizing the following criterion:

Jc0 = k(V +NuQci) ~Ndk1: (30)

Remark 3: If simultaneous faults may appear, a combination of fault
should be considered, but the methodology remains.

This structure, depicted on Fig. 3, permits to significantly reduce the
conservatism introduced by the H1 design of Qc. The selection of
the appropriate control filter is done by a simple logic, exploiting the
residual given by a diagnosis filter, Qd, synthesized by standard H1
techniques, presented in [9]. Qd is determined in order to shape the
response of the filter to the faults, while minimizing its sensitivity to to
the disturbance. This is achieved by minimizing the criterion

Jd = k[Qd
~Nd Qd

~Nf � T ]k1 (31)
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Fig. 4. Fault estimation.

Fig. 5. Comparison of the obtained output y1(t) for different control methodologies.

where T (s) is the desired frequency response to the faults. This model
matching problem reduces to standard H1 control problem for usual
systems and can be addressed by LMI-based solution of [6], as pro-

posed in [9]. Each component of the signal r is compared with a fixed
threshold. A natural threshold is the optimal Jd obtained when synthe-
sizing the diagnosis filter Qd.
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Fig. 6. Comparison of the obtained output y2(t) for different control methodologies.

IV. NUMERICAL EXAMPLE

Let us consider (1), affected by an actuator biais f1(t), a sensor biais
f2(t) and an unknown input d(t). The exogenous signals are defined
by f1(t) = f2; for 1 � t � 2; 0 elseg; f2(t) = f2; for 3:5 �
t � 4:5; 0 elseg and d(t) is a random number uniformly distributed
in [�1; 1]

E =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 0 0

A =

�15 1 0 0

5 �10 0 0

0 0 1 0

0 0 0 1

B =

1 0

0 0

0 0

0 1

E1 = [0; 01 0 0 0]T

R1 =
�1 0 0 0

0 0 0 0

T

C =
0 1 0 0

0 0 1 0

D =
0 0

0 0
E2 =

0

0

and

R2 =
0 0

0 1
:

One can check that the necessary assumptions are verified. Following
the proposed methodology, we chose the nominal controller such that
the real part of the closed-loop poles �i verify �10 < <(�i) < �1.
The obtained results are displayed in Figs. 4–6. The estimation of the
faults is shown on Fig. 4. Figs. 5 and 6 give the outputs y1(t) and y2(t)
respectively in different cases. The disturbance and fault free, nom-
inal response is represented with circles. The observer-based control
affected by disturbance and fault is represented by the dashed lines.
The FT control is represented by the crossed lines and the improved

FT control is represented by the solid lines. It is clearly seen, on both
Figs. 5 and 6 that the observer-based controller does not match the fault
and disturbance free case, whereas the proposed FT does. The improv-
ment of the FTC obtained with adaptative controller appears in Fig. 5.

V. CONCLUSION

In this note, fault tolerant feedback control is extended to descriptor
systems. The coprime factorization of descriptor systems permits to
build a pre residual signal. Then different filters are synthesized, by
standard H1-techniques, to perform fault tolerant control. The fault
tolerant controller is based on the well known Youla controller param-
eterization. The parameterizing filter is designed to minimize the devi-
ation of the output caused by the fault and the disturbance. A high-per-
formance FTC architecture includes a fault diagnosis filter to adapt on-
line the controller parameter and thus improve the fault tolerance by
selecting a controller dedicated to the appearing fault, and limit the
conservatism introduced in the H1 design of the FTC filter.
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Spectral Conditions for Positive Realness of
Single-Input–Single-Output Systems

Robert Shorten and Christopher King

Abstract—In this note, we derive necessary and sufficient conditions
for a single-input–single-output system to be (strictly) positive real. These
conditions take the form of a spectral condition on a matrix product con-
structed from the state space representation of the linear time-invariant
system . Numerical examples are given to illustrate the
usefulness of our conditions.

Index Terms—Kalman–Yacubovic–Popov, positive real transfer func-
tions, quadratic Lypunov functions, strictly positive real transfer functions.

I. INTRODUCTION

In this note, we consider the problem of determining whether the
transfer functionH(j!) associated with the linear time-invariant (LTI)
system

� : _x =Ax + bu (1)

y = cTx+ du (2)

is positive real, where A 2 IRn�n, b 2 IRn�1, c 2 IRn�1, d 2 IR,
where x 2 IRn�1, u; y 2 IR, and where H(j!) is given by

H(j!) = d+ cT (j!I � A)�1b: (3)
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Recently, several papers have appeared that give compact conditions to
test whether a given transfer function is (strictly) positive real [1]–[4].
In this note, we show that (strict) positive realness can be easily de-
termined from: 1) the spectrum of the matrix (A� (1=d)bcT )A when
d 6= 0; and 2) the spectrum of the matrix A(I � (1=cTApb)ApbcT )A
for some odd integer p when d = 0. An important advantage of the
conditions presented in this note is that they are formulated directly in
terms of the state-space representation of �, namely fA; b; c; dg. Sev-
eral examples are given to illustrate the usefulness of our tests and the
ease with which they may be used.

II. DEFINITIONS

Let A be a real n � n matrix, and suppose the transfer function
H(s) = d + cT (sI � A)�1b has all poles and zeros that lie in the
closed left half of the complex plane. Any poles on the imaginary axis
are assumed to be simple. It follows thatH(s) is real for all real s, and
that H(s) is analytic in Re(s) > 0. Then, H(s) is said to be positive
real (strictly positive real) if the following conditions are satisfied [5],
[6].

Definition 2.1: 1) Re(H(j!)) � 0 for all ! 2 IR (excluding any
poles on the imaginary axis); and 2) all residues of H(s) at poles on
the imaginary axis are positive.

Definition 2.2: Define H�(s) = H(s � �). Then, H(s) is strictly
positive real (SPR) if H�(s) is PR for some � > 0.

Comment: Note that Definition 2.1 implies that if H(s) is PR
thenRe(H(s))> 0wheneverRe(s) > 0. Also, Definition 2.2 implies
that if H(s) is SPR then H(s) is a stable transfer function (the matrix
A has all of its eigenvalues in the open left-half of the complex plane
and is said to be stable). Furthermore Re(H(j!)) cannot decay more
rapidly than !�2 as j!j ! 1 [5].

III. MAIN RESULTS

We state results separately for the cases d > 0 and d = 0 as they
require different conditions.

Theorem 3.1: Consider the transfer function H(s) = d+ cT (sI �
A)�1b with d > 0. H(s) is strictly positive real (SPR) if and only if:
1) A is stable, and 2) the matrix (A� (1=d)bcT )A has no eigenvalues
on the closed negative real axis (�1; 0]. H(s) is positive real (PR) if
and only if: 1) the matrix (A� (1=d)bcT )A has no eigenvalue of odd
(algebraic) multiplicity on the open negative real axis (�1; 0), and 2)
all residues of H(s) at poles on the imaginary axis are positive.

Comment: The SPR condition admits the following interesting
interpretation when the matrix A is stable. Strict positive realness of
the system fA; b; c; dg, d 6= 0 is equivalent to requiring that the matrix
pencilA�1+�(A�(1=d)bcT ) be nonsingular for all positive �. In the
case where A� (1=d)bcT is also stable, this is equivalent to requiring
that the dynamical systems _x = Ax and _x = (A � (1=d)bcT )x have
a common quadratic Lyapunov function [7].

Theorem 3.2: Consider the transfer function H(s) = cT (sI �
A)�1b. H(s) is SPR if and only if: 1) cTAb < 0; 2) cTA�1b < 0;
3) A is stable; and 4) A(I � (1=cTAb)AbcT )A has no eigenvalues on
the open negative real axis (�1; 0).

Let p be the smallest odd integer such that cTApb 6= 0. Then H(s)
is PR if and only if: 1) (�1)(p+1)=2cTApb > 0; 2) the matrix A(I �
(1=cTApb)ApbcT )A has no eigenvalue of odd (algebraic) multiplicity
on the open negative real axis (�1; 0); and 3) all residues of H(s) at
poles on the imaginary axis are positive.

Comment: The definition of strict positive realness given in [5],
[6], and [3] (Definition 2.2) is motivated in part by the desire that
any proper system which is SPR should also satisfy the Kalman–
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