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Design of Proportional-Integral Observer for Unknown
Input Descriptor Systems

Damien Koenig and Saïd Mammar

Abstract—This note presents simple methods to design full- and reduced-
order proportional integral observer for unknown inputs (UI) descriptor
systems. Sufficient conditions for the existence of the observer are given
and proven. The observer is solvable by any pole placement algorithm,
it achievesa posteriori robustness state and UI estimation versus to time
varying parameters and bounded nonlinear UI. An illustrative example is
included.

Index Terms—Descriptor system, nonlinearities and robustness, state
and unknown inputs (UI) estimation.

I. INTRODUCTION

Since Luenberger’s work [9] the problem of designing observers for
linear state–space models has been dealt with intensively. There are
many approaches designing an observer for linear time invariant de-
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scriptor systems such as Luenberger observers [7] or observers in de-
scriptor form [4]. In [14], the method, based on the singular value de-
composition and the concept of generalized inverse matrix, has been
proposed to design a reduced-order observer. In [15], the generalized
Sylvester equation was used to develop a procedure designing reduced-
order observers. In [12], a method based on the generalized inverse ma-
trix, which extends the method developed in [5], has been described.
Full- and reduced-order observers for discrete-time descriptor systems
have been presented in [3] and [4]. In [2], the method designs full and
reduced order observers for unknown inputs (UI) free linear time-in-
variant (LTI) descriptor systems. The full-order observer approach is
based on a method developed in [1], it extends to descriptor systems,
while the reduced-order observer design method leans on the resolu-
tion of the generalized Sylvester equation.

In this note, we present simple and new methods to design full and
reduced order proportional integral (PI) observers for UI descriptor sys-
tems subject to parameter variations. The full-order observer approach
is based on a method developed in [2], it is extended to PI observer for
a UI descriptor system. The PI observer structure sticks to the structure
proposed in [13]. Meanwhile, the reduced order observer approach is
performed through a coordinate system transformation and some sub-
stitutions, which were treated in [10] and extended to a PI observer for
UI descriptor system.

We consider a class of UI LTI descriptor systems described by

E� _x = A�x +B�u+N�f

y� = C�x
(1)

wherex 2 n is the state vector,u 2 n is the known input vector,
y� 2 m is the output vector,f 2 n is the disturbance (or UI) vector
with its distribution matrixN� 2 e�n . E� 2 e�n, A� 2 e�n,
B� 2 e�n , andC� 2 m�n are known constant matrices. Let
r := rankE� � minfe; ng, and assume thatrankN� = nf and
rankC� = m. As in [8], the regularity assumption [i.e.,A�, E� are
square anddet(�E��A�) 6= 0] is not required. Moreover ifE� = I ,
then (8) is always verified, although the UI decoupled condition [i.e.,
rank (C�N�) = rankN� = nf ] needed in UI observer [1], [6] might
not be. Therefore, the PI observer presents generally less restrictive
existence conditions than the UI observer [1], [6].

The note is organized as follows. Section II presents the general
problem statement and assumptions. Section III is dedicated to the de-
sign procedure and existence conditions for the PI-observer, which are
established and proven. Finally, Section IV applies the developed pro-
cedure to a design example that includes parameter variations and UI
nonlinear bounded function. The results obtained are compared to those
of the P-observer of [2].

II. PROBLEM STATEMENT AND ASSUMPTIONS

Some useful definitions concerning observability of singular sys-
tems are reminded

E _x = Ax

y = Cx:
(2)

If an arbitrary initial condition is permitted, the free response of (2)
may contain impulsive modes. Ifdeg[det(sE � A)] = q, the free-re-
sponse offE _x = Axg exhibits exponential modes atq finite frequen-
cies andrank (E) � q impulsive modes which are undesirable. The
following definitions are taken from [4].

Definition 1: System (2) is called R-detectable if there exists a ma-
trix L such that�(E; A � LC) � �, where�(E; A � LC) :=
fs: s 2 ; s finite, det(sE � (A � LC)) = 0g,� := fbe included

0018-9286/02$17.00 © 2002 IEEE



2058 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 12, DECEMBER 2002

ing and � := fthe open left-half complex planeg. From [2] and [4],
singular system (2) is R-observable (resp., R-detectable) if and only if
rank [ sET �AT CT ]T = n, for all s 2 [resp.,Re(s) � 0].

Definition 2: A pair of matrices(E; A) is said to be stable and im-
pulse-free (causal), if�(E; A) � � andrankE = deg(det(sE �
A)), respectively.

Definition 3: System (2) is called impulse observable if there exists
a matrixL such thatrank (E) = deg(det(sE � (A � LC))) or,
equivalently, if

rank

E A

0 E

0 C

= n+ rankE:

Definition 4: System (2) is observable if it is both R-observable and
rank [ET CT ]T = n. A system is impulse observable if it is observ-
able, but its inverse is not true.rank [ET CT ]T = n implies that the
impulse observability is true.

Since the observer is a PI observer we can approximate the bounded
nonlinear UI function (f ) by a step function where the approximate
error can be minimized by increasing the observer bandwidth (see re-
mark 2). The PI observer (5) is also synthesized on the basis of the
following augmented descriptor system:

E� 0

0 I

_x

_f
=

A� N�

0 0

x

f
+

B�

0
u

y� = [C� 0 ]
x

f
:

(3)

Assuming thatrank [E� N� ] = rankE� = r, there exists a non-
singular matrixP � such as:P �[E� N� ] = [E

0

N

0
]; P �A� = [ A

A
];

P �B� = [ B
B

]; E 2 r�n, andrankE = r.
Using the aforementioned transformations, (3) is reduced to a re-

stricted systems equivalence (r.s.e.)

E 0

0 I

_x

_f
=

A N

0 0

x

f
+

B

0
u

y = [C 0 ]
x

f

(4)

wherey = [�B u

y
] 2 q=m+e�r andC = [A

C
] 2 q�n. If

rankE� = e or rank [E
C

] = n thenE = E�, N = N�, A = A�,
B = B�, C = C�, and y = y�. Assuming that (4) is impulse
observable and R-detectable, the following observer can be designed:

_z = Fz + L1y + L2y + Ju+ T1Nf̂

_̂
f = L3(y � ŷ)

x̂ = M1z + T2y

ŷ = Cx̂:

(5)

The second equation in (5) describes the integral loop added to the
proportional one, in the first equation. This observer type is therefore
termed PI observer. MatricesF , L1, L2, L3, J , M1, T1, andT2 are
determined in such a way to enable the asymptotical convergence to
zero of the state and UI estimation errors, respectively defined bye =
x � x̂ andef = f � f̂ .

Remark 1: If rank [E� N� ] = rankE� = r then there exists
a regular matrixP � such that the impulse observability condition of
system (3) is equivalent to the impulse observability condition of the
rse (4) and such that the matrixE is full-row rank (i.e.,rankE = r).
Moreover, if (4) is impulse observable, then it is easy to verify, sinceE

is full-row rank, thatrank [E
C
] = n. There exists then a full-row rank

matrix [T1 T2 ] = [E
C
]+1 such that

[ T1 T2 ]
E

C
= In: (6)

On the other hand, ifrank [ET CT ]T = n, then (4) is impulse
observable (cf. Definition 4).

III. D ESIGN PROCEDURE

A. Full-Order Observer Design

We want to design the full-order (i.e.,n + nf ) PI observer (5) with
M1 = In. Based on the proportional observer designed by [2] and the
PI observer [13] designed for nonsingular systems, we can propose the
full-order nonsingular PI observer (5). Combining (4) to (6) and using
the equalitye = (In � T2C)x� z = T1Ex � z, we obtain the time
derivative of the state and UI estimation errors

_e

_ef
=

F T1N

�L3C 0

e

ef

+
T1A � FT1E � L1C � L2C

0
x+

T1B � J

0
u (7)

whereF = T1A � L2C. Letting L1 = FT2, J = T1B, an au-
tonomous system is obtained. Estimation errors converge asymptoti-
cally to zero if matrixAobs = [T A�L C

�L C

T N

0
] is Hurwitz. This matrix

becomesAobs = [T A

0

T N

0
] � [L

L
][C 0 ], and it can be stabilized

by the gain[L
L

], if and only if the pair([T A

0

T N

0
]; [C 0 ]) is de-

tectable, i.e.,

rank

sIn � T1A �T1N

0 sIn

C 0

= n+ nf

for all s 2 ; Re(s) � 0.
The following theorems summarize the previous derivations and give

the sufficient conditions for the existence of the full-order PI observer
(5) for s (3) and (4), respectively.

Theorem 1: The sufficient conditions for the existence of the PI ob-
server (5) for (3) are

rank [E� N� ] = rankE� = r

or rankE� = e

or rank
E�

C�
= n

(8)

rank

E� A�

0 E�

0 C�

= n+ rankE� (9)

rank

sE� � A� �N�

0 sIn

C� 0

= n+ nf

for all s 2 ; Re(s) � 0: (10)

Condition (8) ensures that it exists a regular matrixP � which trans-
forms (3) into (4). Equation (9) is the impulse observability condi-
tion and (10) is the generalization of R-detectability condition for sin-
gular systems, which is derived from [11] for nonsingular systems (i.e.,
E� = I).

1Notation:(:) is the generalized inverse of(:) verifying the Moore–Penrose
conditions(:)(:) (:) = (:) and(:) (:)(:) = (:) .
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Theorem 2: The sufficient conditions for the existence of the PI ob-
server (5) for (4) are

rank
E

C
= n (11)

rank

sE � A �N

0 sIn

C 0

= n+ nf

for all s 2 ; Re(s) � 0: (12)

The condition thatAobs can be stabilized is given by the following
theorem.

Theorem 3: System (7) is stabilizable if and only if

rank

sIn � T1A �T1N

0 sIn

C 0

= n+ nf

for all s 2 ; Re(s) � 0: (13)

Proof: Under (8) and (9), this condition is equivalent to (10) and
(12). This is proven in the Appendix. From (1), the other parts are
obvious.

Remark 2: If the UI is not a step function but a bounded nonlinear
UI, it is advisable to always set_f = 0 and increase the bandwidth
of the observer; this compensates the approximation error model of
the UI (see Figs. 7 and 8 for illustration). Whereas the increase of the
bandwidth implies a more noisy state estimation error. A compromise
between robustness and sensitivity should be treateda posteriori.

Algorithm 1: The problem of designing a full-order PI observer for
an LTI system affected by unmeasured disturbances can be formulated
as a simple pole placement algorithm. Let_f = 0 and transform system
(1) into (4). Let[ T1 T2 ] = [E

C
]+ and find matrices[L

L
] such that

matrix([T A

0
T N

0
]� [L

L
][C 0 ]) is stable. Finally compute the ma-

tricesF = T1A � L2C, L1 = FT2, J = T1B andM1 = In.

B. Reduced Order Observer Design

Based on the results of [10], we now propose to design the reduced-
order (i.e.,r + nf ) PI observer (5). SinceE is a full-row rank, there
exists a regular matrixP = [E+ P1 ], which transformsE into the
following form:

E[E+ P1 ] = [ Ir 0r�(n�r) ] (14)

whereP1 = Ker(E) 2 n�(n�r), E+ = ET (EET )�1, P T
1 P1 =

In�r, andP�1 = [ET P1 ]
T .

As the matrixP is regular, then (4) is equivalent to the following
subsystem:

_x1 = A1x1 +A2x2 +Bu+Nf

_f = 0

y = C1x1 + C2x2

(15)

where[x
x
] = P�1x, x1 2 r, [A1 A2 ] = AP and[C1 C2 ] =

CP .
In addition, the matrixC2 2

q�(n�r) is full-column rank, if and
only if system (4) is input observable. Assumingrank (C2) = n � r,
we can, therefore, make the regularP2 = [

P

C
] transformation

P2C2 =
P3

C
+
2

C2 =
0(q�(n�r))�(n�r)

In�r
(16)

where P T
3 = Ker(C

T

2 ) 2
q�(q�(n�r)) and C

+
2 =

(C
T

2 C2)
�1C

T

2 .

Multiplying both sides of the measurement equation of (15) byP2,
we get

P3y =P3C1x1

x2 =C
+
2 y � C

+
2 C1x1 (17)

hence, substituting (17) into (15), we obtain the following subsystem:

_x1 = A1 � A2C
+
2 C1 x1 + A2C

+
2 y +Bu+Nf

_f = 0:

(18)

We can now propose the following natural observer structure:
_̂
x1 = A1 � A2C

+
2 C1 x̂1 +A2C

+
2 y +Bu

+Nf̂ + L2 P3y � P3C1x̂1

_̂
f = L3P3(y � ŷ) = L3P3C1(x1 � x̂1)

x̂2 = C
+
2 y � C

+
2 C1x̂1

x̂ = E+
1 x̂1 + P1x̂2 = E+

� P1C
+
2 C1 x̂1 + P1C

+
2 y

(19)

which is equivalent to the reduced-order PI observer (5) wherez = x̂1,
F = (A1 � A2C

+
2 C1 � L2P3C1), L1 = A2C

+
2 , L2 = L2P3,

L3 = L3P3, J = B, M1 = (E+
� P1C

+
2 C1), T2 = P1C

+
2 , and

T1 = Ir .
Let e1 = x1 � x̂1 and combine (17)–(19) to obtain the autonomous

state estimation errors system

_e1

_ef
=

A1 � A2C
+
2 C1 N

0 0

�
L2

L3

[P3C1 0 ]

e1

ef

e

ef
=

E+
� P+

1 C
+
2 C1 0

0 In

e1

ef
:

(20)

The autonomous system (20) can be stabilized by the matrix gain

[
L

L
] if and only if the pair([ (A �A C C )

0
N

0
]; [P3C1 0 ]) is de-

tectable.
The following theorems summarize the aforementioned derivations

and give the sufficient conditions for the existence of the reduced order
PI observer (5) for (18).

Theorem 4: The sufficient conditions for the existence of the re-
duced-order PI observer (5) for (4) are

(12) and rankE = r; E 2
r�n

: (21)

Theorem 5: The sufficient conditions for the existence of the PI ob-
server (5) for (18) are

rankC2 = n� r (22)

rank

sIn � A1 � A2C
+
2 C1 �N

0 sIn

P3C1 0

= r + nf

for all s 2 ; Re(s) � 0: (23)

Proof: See the Appendix for the proof of the equivalences be-
tween (11) and (22) and underrankE = r and (11), the equivalence
between (12) and (23).

Algorithm 2: Let _f = 0, transform (1) into (4). Let
P = [E+ kerE ], [A1 A2 ] = AP , [C1 C2 ] = CP ,

P T
3 = kerC

T

2 and find matrices [L
L

] such that matrix

([ (A �A C C )
0

N

0
] � [

L

L
][P3C1 0 ]) is stable. Remaining

matrices are obtained asF = (A1 � A2C
+
2 C1 � L2P3C1), L1 =

A2C
+
2 , L2 = L2P3, L3 = L3P3, J = B,M1 = (E+

� P1C
+
2 C1),

T2 = P1C
+
2 andT1 = Ir .
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Fig. 1. State estimation with P-observer.

Fig. 2. State estimation with PI-observer.

IV. EXAMPLE

In this section, two cases are being examined. In the first one, a linear
system is subject to parameter variations. It illustrates the estimation
performance of PI observer and compares it to the P observer developed
in [2]. In the second one, the system is also disturbed by nonlinear
UI. The results show that the PI observer estimates both the state and
the bounded nonlinear UI under parameter variations. Some technical
issues for the choice of the eigenvalues of the PI-observer are discussed,
but due to space limitation only the full-order observer is illustrated.

Consider the UI-LTI descriptor system (1) described by

E
� =

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

A
� =

0 0 1 0

1 0 0 0

�1 0 0 1

0 1 1 1

B
� =

0

0

0

�1

N
� =

1

0

0

0

C
� = [ 0 1 0 0 ]:

A. Case 1. Uncertain Parameters

In this case, we consider the system affected by an uncertain additive
matrix given by

~A� = A
�(I +�A)

where~aij = aij(1 + �aij), �aij = �ij sin(2��
0

ijt) andj�0ij j < 2,
j�ij j < 10.

Fig. 3. Estimates forx .

Fig. 4. Estimates forx .

Rank[E
C

] = 2 6= n, but rank [E� N� ] = rankE�, then
(8) holds and (4) exists. Since the pair([T A

0

T N

0
]; [C 0 ]) is

observable, it is possible to assign all eigenvalues to an arbitrary
set values. In the following two figures, we compare the results
obtained with the P-observer and PI-observer. In these cases, the
eigenvalues chosen for the two observers are the same and set at� =
f�22; �18; �26; �19; �33g. As shown on Figs. 1 and 2, the PI-
observer leads to a better estimation than the P-observer. It is also
demonstrated that our PI observer is robust against to parameter
variations.

B. Case 2. Nonlinear Disturbance and Uncertain Parameters

We compare the results obtained with the PI-observer and the
P-observer, both when the parameters of~A� are uncertain and time
varying (same as in the first case), and also when the system is
disturbed by a bounded nonlinear UI. The results obtained with the
P-observer and the PI-observer are given on Figs. 3–6. These figures
indicate that the PI-observer performs a much better estimate than
the P-observer. Moreover, the PI-observer provides a good and robust
estimation of the UI(f = 5 + 2 sin(4t)), which the P-observer
cannot do.

This example shows that the PI observer proposed, givesa posteriori
state and nonlinear bounded UI robust estimations versus of parameter
variation. On Figs. 3–6, the eigenvalues of the observer are fixed at� =

f�22; �18; �26; �19; �33g and the results can be significantly im-
proved by setting higher negative eigenvalues (Remark 2, Fig. 7). This
causes unbiased nonlinearity estimation, but it obviously increases the
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Fig. 5. Estimates forx .

Fig. 6. Estimate for UI.

Fig. 7. Estimate for UI, with 2�.

sensitivity to noises due to an increased bandwidth. Finally, Fig. 8
shows that, increasing the bandwidth (i.e., resp.,1 �; 10 �; 100 �)
of the observer implies a reduction of the phase lag and an attenuation
of the transfer function between̂f (ef ) andx̂1 (e1) at low frequencies
where

x̂1 = (1 0 0 0 )(sI � F )�1T1Nf̂
y=u=0

e1 =(1 0 0 0 )(sI � F )�1T1Nef :

Fig. 8. Bode between UÎf and estimatêx , with �.

Fig. 9. Estimate for UI, with 10 �.

The same results are obtained for the other states (states estimations
errors), the estimation is, thus, robust face of UI. Notice that, if the UI is
not belonging to the bandwidth of the synthesized PI observer, the state
and UI estimation is namely not biased on mean value. Fig. 9 illustrates
this fact, the frequency of the UI is of 4 rad/s while the bandwidth of
the observer obtained for 0.1� is less than 3.3 rad/s.

V. CONCLUSION

The design of a full- and reduced-order nonsingular PI observer for
UI descriptor systems and existence conditions have been given and
proven. The proposed observer aims at estimating both the state and
the UI. It has been shown that the existence conditions of the PI-Ob-
server proposed, generalize those adopted in [2] for the proportional
observer design of free UI descriptor system. Moreover,a posteriori
robustness state and UI estimations face to parameter variations and
UI bounded nonlinearities may be addressed by setting higher eigen-
values. This cannot be achieved with proportional observer [2]. One of
the perspectives that could be worth being explored, is the use of both
state and UI estimations to design an UI tolerant control system.

APPENDIX

Proof: Under (8) and (9), we prove that (10), (12), (13). For
all s 2 ; Re(s) � 0

rank

sE� � A� �N�

0 sIn

C� 0
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= rank

P � 0 0

0 In 0

0 0 �Iq

sE�

� A�

�N�

0 sIn

C� 0

= rank

sE � A �N

0 sIn

�C 0

= rank

sE � A �N

0 sIn

�sC 0

�C 0

= rank

T1 0 T2 0

0 In 0 0

0 0 �Iq sIq

0 0 0 �Iq

sE �A �N

0 sIn

�sC 0

�C 0

= rank

sT1E � T1A + sT2C �T1N

0 sIn

0 0

C 0

= rank

sIn � T1A �T1N

0 sIn

C 0

= n+ nf

which is equivalent to the detectability of the pair
([T A

0
T N

0
]; [C 0 ]).

Proof (11), (22): The matrixP = [E+ P1 ] is regular and
E[E+ P1 ] = [ Ir 0r�(n�r) ] then

rank
E

C
=rank

E

C
[E+ P1 ]

= rank
Ir 0r�(n�r)

C1 C2

= n

, rankC2 = n� r:

Proof: UnderrankE = r and (11), we prove that (12), (23).
Define the following regular matrices:

U1 =

Ir 0r�q

0(q�(n�r))�r P3

0(n�r)�r C
+
2

and

V1 =
Ir 0r�(n�r)

�C
+
2 C1 In�r

(12)=

rank U1
sE � A

C
PV1 = n

for all s 2 ; Re (s) > 0

rank U1

�A �N

C 0

PV1 0

0 In
= n+ nf

for s = 0

=

rank

sIr � A1 � A2C
+
2 C1 �A2

P3C1 0

0 In�r

= n

for all s 2 ; Re(s) > 0

rank

� A1 �A2C
+
2 C1 AP1 �N

P3C1 0 0

0 In�r 0

= n+ nf

for s = 0

=

rank
sIr � A1 �A2C

+
2 C1

P3C1

= r

for all s 2 ; Re(s) > 0

rank
� A1 � A2C

+
2 C1 �N

P3C1 0
= r + nf

for s = 0

= rank

sIn � A1 � A2C
+
2 C1 �N

0 sIn

P3C1 0

= r + nf

for all s 2 ; Re(s) � 0:

whereP2P�12 = [
P

C
][P T

3 C2 ] = [
I

0

0
I

]
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