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The note is organized as follows. Section Il presents the general
Abstract—This note presents simple methods to design full- and reduced- problem statement and assumptions. Section IIl is dedicated to the de-
order proportional integral observer for unknown inputs (Ul) descriptor  sjgn procedure and existence conditions for the Pl-observer, which are
systems. Sufficient conditions for the existence of the observer are given tablished and proven. Finally. Section IV lies the devel dor
and proven. The observer is solvable by any pole placement algorithm, established a _p oven. ally, _ec 0 applies the (_3 ?ODe pro-
it achievesa posteriorirobustness state and Ul estimation versus to time cedure to a design example that includes parameter variations and Ul
varying parameters and bounded nonlinear Ul. An illustrative example is nonlinear bounded function. The results obtained are compared to those

1)

Design of Proportional-Integral Observer for Unknown
Input Descriptor Systems

included. of the P-observer of [2].
Index Terms—Descriptor system, nonlinearities and robustness, state
and unknown inputs (Ul) estimation. Il. PROBLEM STATEMENT AND ASSUMPTIONS

Some useful definitions concerning observability of singular sys-

|. INTRODUCTION tems are reminded
Since Luenberger’s work [9] the problem of designing observers for Ei = Ax
linear state—space models has been dealt with intensively. There are y=Cu 2

many approaches designing an observer for linear time invariant de-
If an arbitrary initial condition is permitted, the free response of (2)
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in} andC™ := {the open left-half complex plafieFrom [2] and [4], is full-row rank, thatrank [g] = n. There exists then a full-row rank
singular system (2) is R-observable (resp., R-detectable) if and onlyrittrix [T7  T>] = [Z]Jrl such that
rank[sET — AT 71T =n,foralls € C[resp.,Re(s) > 0]. ‘

Definition 2: A pair of matriceg E, A) is said to be stable and im- [T) Tp) [E] =1,. (6)
pulse-free (causal), f (E, A) C C~ andrank E = deg(det(sE — ¢
4)), respectively. On the other hand, ifank[E” C”]" = n, then (4) is impulse

Definition 3: System (2) is called impulse observable if there exist§ycaryable (cf. Definition 4).
a matrix L such thatrank (E) = deg(det(sE — (4 — LC))) or,
equivalently, if I1l. DESIGN PROCEDURE

E A A. Full-Order Observer Design
rank | 0 FE | =n4rank E.

0 C We want to design the full-order (i.e2,4 n ) Pl observer (5) with

M, = I,,. Based on the proportional observer designed by [2] and the
Definition 4: System (2) is observable if it is both R-observable anf! 0bserver [13] designed for nonsingular systems, we can propose the
rank [EY C"']" = n. Asystemis impulse observable ifitis obseryfull-order nonsingular Pl observer (5). Combining (4) to (6) and using

able, butitsinverse is not truenk [ ET €T |7 = nimpliesthatthe the equalitye = (I, — T>C)x — z = T1 Ex — =, we obtain the time
impulse observability is true. derivative of the state and Ul estimation errors

Since the observer is a Pl observer we can approximate the boundieg F TN e
nonlinear Ul function ) by a step function where the approximateL =
error can be minimized by increasing the observer bandwidth (see e~ —LsC 0 er
mark 2). The PI observer (5) is also synthesized on the basis of the TWA-FTIZ'E—-L,C - LC TnB—-J
following augmented descriptor system: 0 z+ 0 u (7)

E* 0| [= A N [a B* whereF = T\A — L,C. LettingL, = FT,,J = T\ B, an au-
sl T f + “ tonomous system is obtained. Estimation errors converge asymptoti-
(3) callytozeroifmatrixdops = [*17, “2% {7 ]is Hurwitz. This matrix
y* =[C" 0] {;] . becomest.p. = [5* “4V] = [72][C 0], and it can be stabilized
by the gain[ 7], if and only if the pair(["}* “1¥], [C' 0]) is de-
. . tectable, i.e.,
Assuming thatauk [ E* N*] = rank E* = r, there exists a non- ectable, 1.
singular matrixP” such asP"[E* N*] =[5 [ PTA" =[}']; sl,—TiA -TWN
P*B* =[] E € R™*", andrank E = r. rank 0 sh, | =n+n;
Using the aforementioned transformations, (3) is reduced to a re- o 0

stricted systems equivalence (r.s.e.)
. forall s € C, Re(s) > 0.
{E 0} [‘l} _ [A N} {l} {B] " The following theorems summarize the previous derivations and give

0 I]|f 0 0] |f 0 the sufficient conditions for the existence of the full-order PI observer

. (4) (5) for s (3) and (4), respectively.
y=[C 0] [ } Theorem 1: The sufficient conditions for the existence of the PI ob-
f server (5) for (3) are

wherey = [“F1*] € RO andC o= [2H] € RO rank[E"  N7]=rank E" =r
rank E* = e or rank[gf] =nthenE = E*, N = N*, A = A", orrank E* = e
B = B",C = C*, andy = y*. Assuming that (4) is impulse B* (®)
observable and R-detectable, the following observer can be designed: orrank =n
i=F:+Liy+Loy+Ju+TINf rE* A
]'E =Ls(y —9) 5) rank | 0 E*| =n+rank E” 9)
&= Mz + Toy Lo ¢~
j=Ca. sE* — A* =N
o . . rank 0 sha, | =n+ny
The second equation in (5) describes the integral loop added to the .
proportional one, in the first equation. This observer type is therefore L C 0
termed Pl observer. Matrices, L, L2, Lz, J, M., T, andT; are foralls € C,  Re(s) > 0. (10)

determined in such a way to enable the asymptotical convergence t

zero of the state and Ul estimation errors, respectively defined-by %ondltlon (8) ensures that it exists a regular mafffxwhich trans-

v—iandes = f— f forms (3) into (4). Equation (9) is the impulse observability condi-
- - : tion and (10) is the generalization of R-detectability condition for sin-

Remark 1: If rank [ E* N*] = rank E* = r then there exists | t hich is derived f 1111 inaul . !
a regular matrixP™ such that the impulse observability condition oi%liaisi_l)s ems, which is derived from [11] for nonsingular systems (i.e.,

system (3) is equivalent to the impulse observability condition of tHe

rse (4) and such that the matuxis full-row rank (i.e. rank E' = 7). INotation:(.)* is the generalized inverse @f) verifying the Moore—Penrose
Moreover, if (4) is impulse observable, then it is easy to verify, sifice conditions(.)(.)*(.) = (.) and()*t()()T = ()*.
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Theorem 2: The sufficient conditions for the existence of the Pl ob- Multiplying both sides of the measurement equation of (15Fby

server (5) for (4) are we get _
B Py =P;Chi7
raak | ¢ = (11) 7, =Cly -0 Cim a7
sE—A —N hence, substituting (17) into (15), we obtain the following subsystem:
rank 0 ,sInf =n+4ny Tl = (Zl - Zza; ?1) T+ Iz?jy + Bu + ."Vf (18)
¢ 0 f=0
foralls € C,  Re(s) > 0. (12)  We can now propose the following natural observer structure:
The condition thatd,;. can be stabilized is given by the following T = (Zl Ny Wk 61) #1 4+ 4.C 1y + Bu
theorem. P — .
Theorem 3: System (7) is stabilizable if and only if +Nf+ Ly (Psy— PsCi7y)
sl, —T\A —T\N F=TaPi(y—§) = Ls AT (71 — 1) (19)
rank 0 sInf =n+ny jz — ij _ Uj C.7
C 0 t=Efn+ P = (B = RS T+ PT3y
foralls € C,  Re(s) > (13)

which is equwalent to the reduced-order PI observer (5) whetet, ,
Proof: Under (8) and (9), this condition is equivalent to (10) and” = (4; — 4,03 C1 — IuPCh), Ly = A:Cy, Ly = LZPJy
(12). This is proven in the Appendix. From (1), the other parts afe; = L;Ps, J = B, M, = (Et — PlC C), Ty = PlCZ , and
obvious. m 7 =1.
Remark 2: If the Ul is not a step function but a bounded nonlinear Lete; = 7; — 7 and combine (17)—(19) to obtain the autonomous
Ul, it is advisable to always set = 0 and increase the bandwidthstate estimation errors system

of the observer; this compensates the approximation error model of — = =t -
the Ul (see Figs. 7 and 8 for illustration). Whereas the increase of the - < (A1 — A0 C‘) A >
bandwidth implies a more noisy state estimation error. A compromise €1 0 0 €1
between robustness and sensitivity should be tremfmabteriori & = T, ef
Algorithm 1: The problem of designing a full-order PI observer for . — [C: 0] (20)
an LTI system affected by unmeasured disturbances can be formulated 3
as a simple pole placement algorithm. Ifet 0 and transform system Mo T gt _ ptor o 0 -
(1) into (4). Let{ 71 T»] = [¢]* and find matriceg ;] such that = ez } { !
matrix([7y* "WN]-[}2][C 0]) is stable. Finally compute the ma- Ler] L 0 Lnp | ey
tricesF = Ty A — L,C, Ly = F13, J =Ty B andM, = I... The autonomous system (20) can be stabilized by the matrix gain
[LQ] if and only if the palr([“‘l“‘?C “O NPTy 0])is de-

B. Reduced Order Observer Design
tectable

Based on the results of [10], we now propose to design the reducedThe following theorems summarize the aforementioned derivations

order (i.e.,r + ns) Pl observer (5). Sinc& is a full-row rank, there and give the sufficient conditions for the existence of the reduced order
exists a regular matri® = [ ET P, ], which transformsE into the  p| observer (5) for (18).

following form: Theorem 4: The sufficient conditions for the existence of the re-
E[E* P=|I 0rsinn] (14) duced-order Pl observer (5) for (4) are )

12) and rank E =7, EeR™". 21
whereP, = Ker(E) € R~ gt = E"(EE")"', PP, = (12) . B _ @)
I,_.,andP~* = [ET P]T. Theorem 5: The sufficient conditions for the existence of the Pl ob-

As the matrixP is regular, then (4) is equivalent to the followingS€"ver () for (18) are
subsystem: rankCe =n —r (22)
3 —_— A. 7+ sl — 7
Il :Zlil +Z —I—Bu—l— 7Vf 51’” ( C2 C ) N
f —0 (15) rank 0 anf =r+ny
y=C171 + Cams B !
forall s € C, Re(s) > 0. (23)
V\{here[;;] P2, 7 € R[4 A:]=APand[C) C:]= Proof: See the Appendix for the proof of the equivalences be-
cr. L _ _ tween (11) and (22) and undetk E = r and (11), the equivalence
In addition, the matrixC, € R7*("~") is full-column rank, if and  petween (12) and (23). n
only if system (4) is input observable. Assumu‘rglk(Cg) =n-r, Algorithm 2: Let f = 0, transform (1) into (4). Let
we can, therefore, make the regular = [ ] transformation P = [Ef kerE] [4, 4] = AP, [C. C:] = CP,
P 0 Pl = kerC, and find matrlces[ ] such that matrix
— 3 (a—(n—r))x(n—r) - = )
PCy=|_,|Ca= [ I } (16) ([(Al—AQDcQ ) ‘g’] - [Ig][ch‘ 0]) is stable. Remaining
’ . o matrices are obtained @& = (A; — A,C 4 Cy — Ly PsCy), Ly =
where P/ = Ker(Cy) € R™6~0=) and 0F = A,0F,L,=T.Ps, Ls=LsPs,J=DB,M, = (ET - P,C4C1),

(55 52)_15; T, = P,C4 andTy = I,.
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Fig. 2. State estimation with Pl-observer.

In this section, two cases are being examined. In the first one, a liné8} holds and (4) exists. Since the pa[r'}

IV. EXAMPLE
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Rank[gi] = 2 # n, butrank[E* N*] = rank E”, then

AN [Coo)) s

system is subject to parameter variations. It illustrates the estimati@pservable, it is possible to assign all eigenvalues to an arbitrary
performance of Pl observer and compares it to the P observer develop@ld values. In the following two figures, we compare the results
in [2]. In the second one, the system is also disturbed by nonlinedptained with the P-observer and Pl-observer. In these cases, the
Ul. The results show that the Pl observer estimates both the state gignvalues chosen for the two observers are the same andiset at
the bounded nonlinear Ul under parameter variations. Some technital2. —18. —26, —19, —33}. As shown on Figs. 1 and 2, the PI-
issues for the choice of the eigenvalues of the Pl-observer are discus8Bgerver leads to a better estimation than the P-observer. It is also
but due to space limitation only the full-order observer is illustrated.demonstrated that our Pl observer is robust against to parameter
Consider the UI-LTI descriptor system (1) described by

10 0 0 0010
. o100 . 1000
E=1o000 71001
00 0 0 01 1 1
T 0 1
B=| Y w= C*=[0 1 0
0 0
-1 0

A. Case 1. Uncertain Parameters

0].

variations.

B. Case 2. Nonlinear Disturbance and Uncertain Parameters

We compare the results obtained with the Pl-observer and the
P-observer, both when the parametersﬁléf are uncertain and time
varying (same as in the first case), and also when the system is
disturbed by a bounded nonlinear Ul. The results obtained with the
P-observer and the Pl-observer are given on Figs. 3-6. These figures
indicate that the Pl-observer performs a much better estimate than
the P-observer. Moreover, the Pl-observer provides a good and robust
estimation of the UI(f = 5 + 2sin(4t)), which the P-observer

cannot do.

Inthis case, we consider the system affected by an uncertain additivg ;g example shows that the Pl observer proposed, gipesteriori
matrix given by

wherea;; = aij (1 + Aagj), Aai; = 6;; sin(?Tré ) and|b J| < 2,

A" = A"(I + AA)

|6:;] < 10.

state and nonlinear bounded Ul robust estimations versus of parameter
variation. On Figs. 3—6, the eigenvalues of the observer are fixedat
{-22, —18, —26, —19, —33} and the results can be significantly im-
proved by setting higher negative eigenvalues (Remark 2, Fig. 7). This
causes unbiased nonlinearity estimation, but it obviously increases the
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The same results are obtained for the other states (states estimations
errors), the estimation is, thus, robust face of Ul. Notice that, if the Ul is
not belonging to the bandwidth of the synthesized Pl observer, the state
and Ul estimation is namely not biased on mean value. Fig. 9 illustrates
this fact, the frequency of the Ul is of 4 rad/s while the bandwidth of
the observer obtained for OALis less than 3.3 rad/s.

V. CONCLUSION

The design of a full- and reduced-order nonsingular Pl observer for
Ul descriptor systems and existence conditions have been given and
proven. The proposed observer aims at estimating both the state and
the Ul. It has been shown that the existence conditions of the PI-Ob-
server proposed, generalize those adopted in [2] for the proportional
observer design of free Ul descriptor system. Moreoaegvpsteriori
robustness state and Ul estimations face to parameter variations and
Ul bounded nonlinearities may be addressed by setting higher eigen-
values. This cannot be achieved with proportional observer [2]. One of
the perspectives that could be worth being explored, is the use of both
state and Ul estimations to design an Ul tolerant control system.

sensitivity to noises due to an increased bandwidth. Finally, Fig. 8
shows that, increasing the bandwidth (i.e., respA, 10 A, 100 A)

of the observer implies a reduction of the phase lag and an attenuation
Proof: Under (8) and (9), we prove that (18} (12) & (13). For

s € C,Re(s) > 0

of the transfer function betweeyﬁ(cf) andz; (e;) atlow frequencies
where

fi=(1 0 0 0)sI—F)'ILNf

y=u=0

(1 0 0 0)(sI—F)"'TiNejy.

e

all s

APPENDIX

sE* — A" —N*

rank 0 s1,

C*

ny
0
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P* 0 0 sE* — A* —N*
= rank 0 L, 0 0 sl
0 0 -1 c* 0
rsE—A —N1J
= rank 0 sInf
L -C 0 |
sE—A —=N1
0 sI,
= rank !
—sC 0
L —C 0
Tl 0 TQ O SE - A —J\’T
0 L, O 0 0 slu,
= rank
0 0 -1, sl —sC 0
0 0 0 -1 -C 0
rshhE—-TA+sToC —-T\N
0 sl
= rank :
0 0
L C 0
_SIn - TlA —T1 N
= rank 0 sInf =n-+ny
L C 0
which is equivalent to the detectability of the
([TBA Tloi\f]w [C 0]) n
Proof (11) < (22): The matrixP = [ET P ] is regular and
E[EY P ]=[1 0,x(u-r]then
E E
rank |:C] =rank ({C] [Et P ])
IT ()r n—r
=rank | _ XL ) =n
C Cs

SrankCe =n — 7.

Proof: Underrank E = r and (11), we prove that (12 (23).

Define the following regular matrices:

I, 0
Ui = | Og—(n—ry)xr D3
O(nfr)xr F‘;
and
~ [ I, 01")((7171")
"’/1 = I
__02 01 In—r
rank <U1 |:5E _, A] PV1> =n
foralls € C, Re(s) >0
(12)= —A =N][PV O
rank | U; =n+ny
¢ 0 0 In,
fors =0

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 12, DECEMBER 2002

5[,« - (Zl - Zzé;él) —:—12

rank PC, 0 =n

L 0 I’n.—r
foralls € C, Re(s) > 0

= (E - ija) AP, —N

rank P.C, 0 0 =n+ny
L 0 I, 0

fors =0
( _.S‘I,« - (Zl —_ Zz?; 61)

rank . =7

L »Cy
_ ) foralls € C, Re(s) >0

[ (A4 -4.C5C1) -N

rank . =r4+ny
L Py 0

fors =0

SIn - (I] - IQU:F U]) —N
=rank 0 SInf =r+mny
PC, 0
foralls € C, Re(s) > 0.
whereP, Py ' = [53][1?;' Col =[G, 0] m
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