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a b s t r a c t

This paper focuses on robust fault residual generation for Uncertain Unknown Inputs Linear Parameter
Varying (U�LPV) systems. Firstly, the problem is addressed in standard LPV systems based on the
adaptation of the parity-space approach. The main objective of this approach is to design a scheduled
parity matrix according to the scheduling parameters. It results a perfectly decoupled parity matrix face
to the system states. Then, the major contribution of this paper relies on the extension to U�LPV systems.
Since most of models which represent practical/real systems are subject to parameters variation,
unmodeled dynamics and unknown inputs, the approach is clearly justified. The residual synthesis is
rewritten in terms of a new optimization problem and solved using Linear Matrix Inequalities (LMIs)
techniques. An applicative illustration is proposed and rests on a vehicle lateral dynamic system.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The issue of Fault Detection (FD) in dynamic systems has
received considerable attention in both research and application
domains since the last two decades. Among all concrete systems,
cars represent a wide field of interest in terms of diagnosis. In
effect, it has been noticed the emergence of new safety systems for
vehicles such as anti-lock braking (ABS), adaptive cruise control
(ACC), electronic stability control (ESC) which are incontrovertible
products for modern cars. Those electronic/mechanical systems
which are designed to enhance the security in vehicles might lead
to extremely dangerous situations in case of failures.

Facing this reality, researchers and engineers are working on
solutions to strengthen the reliability by adding supplementary
fault detection layers on their equipments. However, most of
modern processes are complex systems and the synthesis of such
fault detection procedure is extremely difficult to perform. In this
field, many model-based fault detection and isolation (FDI) pro-
cedures have been carried out by researchers. It can be cited, for
instance, analytical redundancy-based methods as proposed in
Chow and Willsky (1984) and well recalled in Gertler (1998), some
statistical and geometrical methods in Basseville and Nikiforov
(1993), Fang, Gertler, Kunwer, Heron, and Barkana (1994), Cao and
Gertler (2004), Balas, Bokor, and Szabó (2003), and some observer-
based approaches as in Ding (2008), Chen and Patton (1999),
Simani, Fantuzzi, and Patton (2002). More recently, researchers

focused on optimization-based techniques for fault detection (e.g.
H1�based approaches) as proposed in Xinzhi and Shuai (2011),
Yueyang and Maiying (2009), Maiying, Ding, Qing-Long, and Qiang
(2010) and references therein.

Within the same creative impulse to Apkarian, Gahinet, and
Becker (1995), many works have been carried out about Linear
Parameter Varying (LPV) systems. Such models have received
much attention as long as they can be used to represent nonlinear
systems. Moreover, vehicle systems which are strongly nonlinear
systems are often modeled as LPV systems. This motivates some
researchers from the FD community to develop model-based
methods using LPV models (Balas, Bokor, & Szabó, 2002;
Balas et al., 2003; Bokor & Balas, 2005; Kwiatkowski, Trimpe, &
Werner, 2007; Wang, Wang, Gao, & Wu, 2006). There are two
commonly used approaches. First the fault estimation methods
where the estimated fault is used as the fault indicating signal.
Second, residual generation methods where the residuals are
synthesized in order to be robust against modeling errors and
unknown inputs.

In this paper, the contribution relies on the design of fault
indicators for a general class of Uncertain, Unknown Inputs non-
linear system which can be written as LPV Uncertain systems
subject to Unknown Inputs, namely U�LPV systems for simplicity.
The approach is based on the synthesis of a residual which
provides the information on the faultiness of the system. First,
the objectives are expressed for LPV systems. Here, the proposed
approach is similar to that presented by the authors in Varrier,
Koenig, and Martinez (2012a), but extended from LTI parity-space
approach. In this case, the parity matrix is computed depending of
the scheduling parameters of the system, to guarantee a perfect
decoupling face to system dynamics. The parity-matrix evaluation
involves symbolic computation and matrix inversions.
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Furthermore, the major contribution concerns the robustness
against uncertainties and parameter variation. The synthesis of the
parity matrix is handled by expressing the objectives as an optimiza-
tion problem. The aim is classical: minimize the residual sensitivity
with respect to uncertainties and disturbances and maximize its
sensitivity face to faults. The approach of the generalized eigenva-
lues/eigenvectors – as a generalization of the approach expressed in
Ding (2008) – is very hard to implement in this application. Its
computation involving symbolic computation is not applicable in this
case. Facing this difficulty, the optimization problem is finally rewrit-
ten in terms of an LMI optimization problem.

The paper is organized as follows: Section 2 presents the
modeling of uncertain LPV systems subject to unknown inputs.
Then, Section 3 presents the parity-space based fault detection
approach expressed in LPV system. Thus, the main contribution is
exposed in Section 4 where the approach is extended to uncertain
LPV systems. Finally, an applicative example based on a vehicle
lateral dynamic system is handled in Section 5 where the aim
is to detect a fault (generally sensor bias) on a lateral accelera-
tion sensor. The performances and improvements of the proposed
approach are discussed in the last section.

2. Uncertain LPV modeling

This section settles the system under consideration used for
residual synthesis. The system is an Uncertain Unknown Inputs
LPV (U�LPV) system. The difference between the scheduling
parameters for LPV definition and uncertain parameters is very
important and is highlighted in the next subsections.

2.1. System definition

Consider the U�LPV system ΣΔ defined by

ΣΔ :
xkþ1 ¼ AðρkÞxkþBðρkÞukþBdðρkÞdkþBf ðρkÞf k
yk ¼ C ðρkÞxkþDðρkÞukþDdðρkÞdkþDf ðρkÞf k

8<
: ð1Þ

where xARn denotes the state vector of the system, yARm the
output vector, uARl the input vector, dARl

d some unknown
inputs and f ARl

f some faults affecting both the state and output
vectors of the system. In this representation, matrices X stand for
uncertain matrices, presented in the following section.

Vector ρk ¼ ½ρ1k ρ2k ⋯ ρMk� defines the vector of the schedul-
ing parameters ρik, which are known at each sample time.

2.2. Uncertainties modeling

Uncertain matrices are considered in the following additive
form:

X ðρkÞ ¼ X0ðρkÞþ ∑
N

i ¼ 1

~Xi ðρkÞδik ð2Þ

where ~Xi ðρkÞ are known LPV matrices and δi are unknown scalars.

Remark 1. In the case of many uncertainties δi, the matrix ~X will
be very large, roughly full of zeros. Therefore, a change of basis
inspired from a singular value decomposition in matrix ~X should
reduce the complexity of the presented methodology as proposed
in Koenig and Mammar (2002).

2.3. Scheduling parameters

In the modeling of the system (Eq. (1)), matrices might depend
on the vector ρk ¼ ½ρ1k ρ2k ⋯ ρMk�. The structure of such matrices

is considered as an Affine-LPV form such as

ZðρkÞ ¼ Z0þρ1kZ1þ⋯þρMkZM ð3Þ
In this modeling, each scalar ρi is an unknown scalar. However,

the main difference between δi and ρi relies on the fact that
scheduling parameters ρi can be measured at each sample time
while δi remain unknown.

2.4. Faults and unknown inputs

In the modeling presented in (1), it has been differentiated un-
known inputs dk from faults fk. This distinction is particularly relevant
since the residual has only to inform on the faultiness of the system.
In this case, unknown inputs will not affect the residual status.

On the other hand, it is sometimes required (for fault isolation)
that the fault detector should only be sensitive to a certain class of
faults f 1k � f k and insensitive to another class f 2k � f k. This
requirement can easily be handled be splitting both matrices Bf
and Df in (1) with respect to f1k and f2k as

Bf f k ¼ ½Bf1 Bf2�
f 1k
f 2k

" #
ð4Þ

and creating the new matrices Bn

f ¼ Bf2 and Bn

d ¼ ½Bd Bf1� (idem for
matrices Df and Dd). Subscripts n stand for the newly defined matrix.

Finally, the residual will be sensitive to faults f1k and insensitive
to the others f2k.

2.5. Observability assumption

In the sequel, it is assumed that the pair ðAðρkÞ;C ðρkÞÞ is always
observable for any combination of ~δ and ρ. As a consequence, the
nominal pair ðA0ðρkÞ;C0ðρkÞÞ is still observable (case ~δ ¼ON�1).

2.6. U�LPV system

Finally, the U�LPV system given in (1) can be rewritten in the
following form:

ΣΔ :

xkþ1 ¼ A0ðρkÞxkþ ∑
N

i ¼ 1

~Ai ðρkÞδikxk
þBðρkÞukþBdðρkÞdkþBf ðρkÞf k

yk ¼ C0ðρkÞxkþ ∑
N

i ¼ 1

~Ci ðρkÞδikxk
þDðρkÞukþDdðρkÞdkþDf ðρkÞf k

8>>>>>>>>><
>>>>>>>>>:

ð5Þ

where it is separated the completely known part of the system
from the uncertain one.

For the sake of residual generation for system ΣΔ, it has been
considered to decompose the further study in two cases:

� Case of LPV system: A solution for residual generation for LPV
systems is firstly proposed. The involved methodology is inspired
from the classical parity-space approach. The scheduling para-
meters are taken into account to generate a scheduled residual.

� Extension to U�LPV systems: Then, the previously exposed
methodology is used to tackle the scheduling parameters. An
LMI formulation is finally proposed to handle uncertainties and
unknown inputs within residual generation.

Both approaches are finally compared in a practical situation in the
last Section 5.

3. Fault detection for LPV systems

In this section, it is proposed to design a fault indicator for LPV
systems. The fault detection principle is based on the parity space
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methodology, inspired from the LTI approach (see Chow & Willsky,
1984; Gertler, 1998), but adapted for LPV ones.

The depicted methodology is necessary for the establishment
of the final residual for U�LPV systems presented in Section 4.
Comparison between both approaches is presented in the appli-
cative Section 5.

3.1. Principle of the approach

In this section, only the following LPV system ΣLPV , without
uncertainties nor unknown inputs is considered:

ΣLPV :
xkþ1 ¼ AðρkÞxkþBðρkÞuk

yk ¼ CðρkÞxkþDðρkÞuk

(
ð6Þ

where xARn represents the state of the system, uARl the
controlled input, yARm its output and ρk the scheduling
parameters.

Diagnosis based on the parity-space approach is generated via
linear combinations of measurements (sensors) and applied inputs
(actuators) taken over a finite window. By making use of known
data, it is generated analytical relationships that hold in the
absence of failures. A fault is so detected when equations are no
longer verified.

The key of the approach is to express the output and its time
shifted over a horizon s as

yðkÞ
yðkþ1Þ

⋮
yðkþsÞ

2
66664

3
77775

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Ys

¼

CðρkÞ
Cðρkþ1ÞAðρkÞ

⋮

Cðρkþ sÞ ∏
s�1

i ¼ 1
Aðρkþ s� i�1Þ

2
6666664

3
7777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
HosðρkÞ

xðkÞþHusðρkÞ

uðkÞ
uðkþ1Þ

⋮
uðkþsÞ

2
66664

3
77775

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Us

ð7Þ
with

HusðρkÞ ¼

DðρkÞ 0 ⋯
Cðρkþ1ÞBðρkÞ ⋯

Cðρkþ2ÞAðρkþ1ÞBðρkÞ Cðρkþ1ÞBðρkÞ ⋯
⋮ ⋱ ⋯

Cðρkþ sÞ ∏
s�1

i ¼ 1
Aðρkþ s� iÞBðρkÞ Cðρkþ s�1Þ ∏

s�1

i ¼ 2
Aðρkþ s� iÞBðρkÞ ⋯

2
666666664
⋯ ⋯ 0
0 ⋯ 0

DðρkÞ ⋱ ⋮
⋱ ⋱ 0
⋯ Cðρkþ1ÞBðρkÞ DðρkÞ

3
7777775 ð8Þ

Remark 2. The observability matrix HosðρkÞ is expressed with
products of matrices A. However, it is known that high powers
of matrix A are generally numerically unstable. Thus, as the
approach is based on this matrix, the result could be numerically
unstable. So, in the case of a high horizon s, the interested author
should use another construction of the observability matrix as
discussed in Varga (1981).

In Eq. (7), Ys is built from sensor measurements and Us results
of the applied inputs. Those data are perfectly known. However,
the state x(k) is – a priori – unknown.

The parity-space methodology manages to make the term
HosðρkÞxðkÞ vanish. Left multiplying Eq. (7) by the so-called parity
matrix WðρkÞ, the residual r(k) is finally given by

rðkÞ ¼WðρkÞT ðYs�HusðρkÞUsÞ ð9Þ

where the parity matrix WðρkÞ is selected from the parity space P
defined by

P9fWðρkÞ s:t: WðρkÞTHosðρkÞ ¼ 0g
Thus in absence of failures, the residual is null.
Moreover, for fault isolation, the usual DOS (dedicated observer

scheme) or GOS (generalized observer scheme) schemes (Frank,
1990) can be applied.

3.2. Parity matrix synthesis

Now, the main objective consists in finding the parity matrix
WðρkÞ which has to be orthogonal to the matrix HosðρkÞ, i.e.
WðρkÞ � HosðρkÞ ¼ 0.

First, the matrix HosðρkÞ can always be split into two sub-
matrices as follows:

HosðρkÞ ¼
Hos1ðρkÞ
Hos2ðρkÞ

" #
ð10Þ

where the matrix Hos1ðρkÞ is regular and so invertible.

Remark 3. By assumption, the system (6) is observable and so the
observability matrix OðAðρkÞ;CðρkÞÞ is full rank. As a consequence,
for a horizon s chosen sZEðn=mÞ (where Eð�Þ represents the
superior integer part), it is always possible to choose the matrix
Hos1ðρkÞ as the regular part of the observability matrix of the
nominal system, i.e. Hos1ðρkÞ ¼ regðOðAðρkÞ;CðρkÞÞÞ. So for a SISO
system, s1 can be chosen as s1 ¼ n.

Thus, by defining WðρkÞT ¼ ½W1ðρkÞT W2ðρkÞT �T , the null equal-
ity WðρkÞT � HosðρkÞ ¼ 0 can be expressed as

WðρkÞTHosðρkÞ ¼ 03 ½W1ðρkÞT W2ðρkÞT �
Hos1ðρkÞ
Hos2ðρkÞ

" #
¼ 0

3W1ðρkÞT ¼ �W2ðρkÞTHos2ðρkÞHos1ðρkÞ�1 ð11Þ

Finally, the matrix WðρkÞT can be rewritten as

WðρkÞT ¼ ½W1ðρkÞT W2ðρkÞT �T

¼ ½�W2ðρkÞTHos2ðρkÞHos1ðρkÞ�1 W2ðρkÞT �
¼W2ðρkÞT ½�Hos2ðρkÞHos1ðρkÞ�1 Iq�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

PðρkÞ

WðρkÞT ¼W2ðρkÞTPðρkÞ ð12Þ

According to those algebraic manipulations, the parity matrix
WðρkÞ is built from the knowledge of matrices AðρkÞ and CðρkÞ. The
left-hand side matrix W2ðρkÞ stands as an extra degree of freedom.
It can be chosen unitary for the purpose of this section.

Nevertheless, the matrix W2 can be used in order to increase
the robustness of the system face to uncertainties, as used in the
next section.

3.3. Choice of the horizon s

According to the depicted methodology, the horizon s in (7)
affects the definition of the residual r(k). Indeed, thanks to Eq. (10)
and Remark 3, the horizon has to be chosen at least larger than the
size of the observability matrix OðAðρkÞ;CðρkÞÞ. The leading Hos1ðρkÞ
matrix will be invertible. Moreover, the matrix Hos2ðρkÞ defines
supplementary rows in the Hos matrix. Those redundant rows are
constructing new residuals in the vector r(k).

To sum up, it is required that the horizon s guarantees the
definition of the observability matrix, so using the definition in
Eq. (6), sZn=m, plus the number of desired residuals. For the sake
of this section, where one residual is required, the horizon can be
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chosen as recalled in Varrier et al. (2012a):

s¼ E
n
m

� �
ð13Þ

where Eð�Þ represents the superior integer part.
To conclude, the choice of the horizon for residual generation

has to be done respecting Eq. (13), but might be increased to
enhance redundant information within the residual.

On the other hand, the residual synthesis involves inversion of
a symbolic matrix Hos1ðρkÞ according to the scheduling parameters
ρk see Eqs. (9) and (12). This symbolic inversion is not restrictive as
it can easily be handled via symbolic software.

4. Fault detection for U�LPV systems

Since a fault detection procedure has been proposed for LPV
system, it is now extended to U�LPV ones. Direct extension from
the previous approach eliminating all the terms subject to uncer-
tainties and unknown inputs is not available. The further subsec-
tion justifies this statement. So, an optimization procedure based
on an LMI formulation of the problem is proposed. The aim is to
synthesize a residual mainly sensitive to the faults while being
non-receptive to uncertainties nor unknown inputs whatever the
scheduling parameters are.

4.1. Extension of the LPV approach

Now, the system under consideration is the U�LPV system (5).
Similar to Section 3.1, expressing the output yk along the horizon s
yields

YsðkÞ�HusUsðkÞ ¼HosxðkÞþ∑
i
ðζkðiÞ ~Hos;iÞxðkÞ

þ∑
i
ðζkðiÞ ~Hus;iÞUsðkÞþHdsUdsðkÞ

þ∑
i
ðζkðiÞ ~Hds;iÞUsðkÞþHfsFsðkÞ ð14Þ

where ζk is constructed with δk, the powers of its elements and
multiple inner products in the form

~ζ
T
k ¼ ½δ1k ⋯ δNk δ21k δ1kδ2k ⋯ δp1k δp�1

1k δ2k ⋯ δsþ1
Nk �T

where δqik ¼ δikδik⋯δik|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
q products

.

The (trivial) classical parity space approach would consist
in finding a scheduled parity matrix WðρkÞ ensuring WðρkÞT
HosðρkÞ ¼ 0. It leads to a residual sensitive to the unknown inputs
dk, the uncertainties δik and to the faults fk. This conspicuous
solution is not acceptable for our problem.

Otherwise, it may sometimes be found a parity matrix WðρkÞ
satisfying

WðρkÞT ½HosðρkÞ ~HosðρkÞ ~HusðρkÞ HdsðρkÞ ~HdsðρkÞ� ¼ 0 ð15Þ
where ~HosðρkÞ ¼ ½ ~Hos;1ðρkÞ ⋯ ~Hos;zðρkÞ�.

First, note that the existence of such a matrix is not guaranteed
since the rowrank of the matrix ½HosðρkÞ ~HosðρkÞ ~HusðρkÞ HdsðρkÞ
~HdsðρkÞ� is not necessarily degenerated. Nevertheless, in the case of
existence, the horizon should be high, leading to hard compu-
tations (numerical troubles due to high powers of matrix A as
exposed in Remark 2) and a long fault detection time, as the
residual will be sensitive to faults during all the horizon s.

As a consequence, the perfect decoupling is not suitable for
on-line computation. A non-perfect parity matrix WðρkÞ will
be sought via an optimization procedure, as introduced in the
problem formulation (17).

4.2. Optimization procedure

The aim of the problem is to find a residual r(k) only designed
from known data as

rðkÞ ¼WðρkÞT ðYsðkÞ�HusðρkÞUsðkÞÞ ð16Þ

which has to be sensitive to faults fk and insensitive to uncertain-
ties δi and to unknown input dk. Those objectives can be expressed
in the following optimization problem in the variable WðρkÞ:

find WðρkÞ s:t: :

WðρkÞTHos ¼ 0

max
W

‖WðρkÞTHfsðρkÞ‖2

min
W

‖WðρkÞT ~HosðρkÞ‖2

min
W

‖WðρkÞT ~HusðρkÞ‖2

min
W

‖WðρkÞTHdsðρkÞ‖2

min
W

‖WðρkÞT ~HdsðρkÞ‖2

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð17Þ

This problem (17) can be written as a constrained optimization
problem (Ding, 2008; Varrier, Koenig, & Martinez, 2012b), as
follows:

P1 :

WðρkÞTHos ¼ 0

min
W

‖WðρkÞTGðρkÞ‖2
‖WðρkÞTHfsðρkÞ‖2

8>><
>>: ð18Þ

where GðρkÞ ¼ ½ ~HosðρkÞ ~HusðρkÞ HdsðρkÞ ~HdsðρkÞ�.
Following the methodology proposed in Section 3.2, this

constrained optimization problem can be turned into a classical
unconstrained one.

The constraint WðρkÞTHos ¼ 0 is guaranteed by considering
WðρkÞ as in (12). Therefore, the optimization problem (18)
becomes an unconstrained optimization problem in the variable
W2ðρkÞ as

P1 : min
W2

‖W2ðρkÞTPðρkÞGðρkÞ‖2
‖W2ðρkÞTPðρkÞHfsðρkÞ‖2

ð19Þ

which is equivalent to

P1 : min
W2

W2ðρkÞT
PðρkÞGðρkÞGðρkÞTPðρkÞT
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Γ1ðρkÞ

W2ðρkÞ
W2ðρkÞTPðρkÞHfsðρkÞHfsðρkÞTPðρkÞT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Γ2ðρkÞ

W2ðρkÞ

¼min
W2

W2ðρkÞTΓ1ðρkÞW2ðρkÞ
W2ðρkÞTΓ2ðρkÞW2ðρkÞ

ð20Þ

where Γ1ðρkÞ and Γ2ðρkÞ are symmetric matrices.
Now, problem P1 stands as an unconstrained quadratic opti-

mization problem in the variable W2ðρkÞ, but scheduled by
parameter ρk. In the next sections, it is proposed a theorem that
symbolically solves (20) depending of the scheduling parameters.
Thus a new polytopic/LMI formulation is studied to avoid symbolic
computations.

4.3. Resolution by eigenvalue assignment

The following theorem and its associated proof give one
solution to problem P1.

Theorem 1 (See Ding, 2008 for the proof). Given an optimization
problem of the form

γn ¼min
X

XTAX

XTBX
ð21Þ

S. Varrier et al. / Control Engineering Practice 22 (2014) 125–134128



where A and B are symmetric matrices, the minimum γ corresponding
to the criterion given in (21) is reached by Xn such that

Xn ¼ϑλqðA;BÞ ð22Þ

where λqðA;BÞ stands for the lowest generalized eigenvalue of the pair
(A,B), and ϑλqðA;BÞ its associated eigenvector. The minimum γn is given
by γn ¼ λqðA;BÞ.

Thanks to Theorem 1, problem P1 (20) can be solved by

P1 : W2ðρkÞT ¼ϑλqðΓ1ðρkÞ;Γ2ðρkÞÞðρkÞ ð23Þ

Then, it is easy to recover the parity vector WðρkÞ thanks to Eq. (12).
This theorem clearly solves problem P1. It has to be pointed out

that its resolution involves to compute generalized eigenvalues
and eigenvectors, depending on the parameter ρk. As each ρi

belongs in an infinite dimensional set (ρiA ½ρmin ρmax�), the resolu-
tion of infinite dimension is impossible. On the other hand, in the
case of smart and small dimension systems, where it has been
considered few uncertainties, this computation can be handled
symbolically. However, most of systems are complex, the resolu-
tion involves very hard computation and consequently hard
implementation.

Facing this reality, this symbolic resolution has been given up
making use of a polytopic approach. Then the optimization
problem is rewritten in a new polytopic form, where each vertex
represents constant sub-optimization problems. In this way,
instead of considering the scheduling parameter within the
resolution, computations are made at each vertex of the polytope,
synthesizing as many parity vectors Wi as polytope vertices. Thus
the parity vector WðρkÞ is built from the linear combination of
each Wi.

4.4. LMI optimization formulation

The problem P1 can be rewritten as the problem P2 (Ding,
2008):

P2 : γ2ðρkÞ ¼min
W2

W2ðρkÞT ðΓ1ðρkÞ�κ2Γ2ðρkÞÞW2ðρkÞ
�

ð24Þ

In effect, the aim is to find a vector W2ðρkÞ which minimizes the
sensibility of uncertainties and disturbances – here represented by
matrix Γ1ðρkÞ – and maximizes the effect of faults, represented by
matrix Γ2ðρkÞ.

Remark 4. The problems P1 and P2 are not strictly equals. They
can be considered as strictly equals if κ is chosen as the lowest
eigenvalue of the pair ðΓ1;Γ2Þ. However, in our case, κ is just
chosen as an extra degree of freedom to fulfill the further
constraints. Nevertheless, even if both problems are not strictly
equals, they traduce the same objective: minimize the effect of the
disturbances (Γ1) and maximize the effect of the fault (Γ2).

To better understand the process formulation, the problem is
firstly addressed for LTI systems (Section 4.4.1) and secondly for
LPV systems (Section 4.5).

4.4.1. Case of LTI systems
Consider the optimization problem for classical LTI matrices

Γi ¼ 1;2. The aim of the problem is to find a vector W2 s.t.

γ ¼min
W2

WT
2ðΓ1�κ2Γ2Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Γκ

W2 ð25Þ

It can be rewritten as a BMI problem

minimize
W2

γ

subject to WT
2ΓκW2!γ

8<
: ð26Þ

which can be expressed as an LMI thanks to the Schur Lemma on
Eq. (26):

minimize
W2

γ

subject to
Γ�1
κ W2

WT
2 γ

" #
g0

8>>><
>>>: ð27Þ

where Γκ has to guarantee Γκg0.

Remark 5. The constraint Γκg0 has to be guaranteed due to the
Schur Lemma. This condition is guaranteed by choosing properly
the scalar κ. For the sequel, it is considered that κ is properly
defined so the constraint is no more a part of the problem.

From the problem given in (26), a trivial solution consists in
choosing W2 as a null matrix. This solution is not allowable for our
problem. So an additional constraint is added in order to tackle
this problem

W2aO1�m�s ð28Þ
This constraint cannot be directly implemented as an LMI since the
vectorW2 is not a symmetric square matrix. As a consequence, it is
considered a new diagonal matrix Y, defined by

Y ¼ diagðW2Þ ð29Þ
from which it can be derived the following constraint:

trðjY jÞgε; ε40 ð30Þ
Finally, the optimization problem can be rewritten in terms of

LMI optimization as

minimize
W2

γ

subject to

Γ�1
κ W2

WT
2 γ

" #
g0

trðjYjÞ�εg0 ε40

8>><
>>:

8>>>>>><
>>>>>>:

ð31Þ

This LMI formulation allows us to solve the problem P2 for LTI
matrices. The next section presents a way to extend the results to
LPV systems.

4.5. Extension to LPV systems

Applying directly the results of the proposed approach for LPV
systems is not allowable as it involves infinite LMI resolution
among all the parameter set. However, the matrix ΓκðρkÞ (built
from Γ1ðρkÞ and Γ2ðρkÞ) can be rewritten in a polytopic form as

ΓκðρkÞ ¼ ∑
q

i ¼ 1
αiðρkÞΓki ð32Þ

The aim of working in the polytopic framework relies on the fact
that the study can be applied to each subsystem at each vertex of
the polytope.

However, by extension of (31), it has to be computed the
inverse of the matrix ΓκðρkÞ. So considering directly the polytopic
formulation of the matrix ΓkðρkÞ is not useful since it should not
preserve the linearity in the parameters αi. Nevertheless, the
interest relies in the polytopic formulation of its inverse Γ�1

k ðρkÞ
which can be expressed as

Γ�1
κ ðρkÞ ¼ α0ðρkÞ ∑

r

i ¼ 1
~α iðρkÞ ~Γ ri ð33Þ

where the term α0ðkÞ stands for the inverse of the determinant of
matrix ΓκðρkÞ. Moreover, as the matrix ΓκðρkÞ has to be positive
definite for all parameters ρk, its associated determinant is also
positive.
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Remark 6. According to the polytopic formulation of the system,
each ~α i is positive. So, positive definiteness of the product ~α i

~Γ ri is
only affected by ~Γ ri.

The LMI optimization problem can be written as

minimize
W2

γ

subject to γ�WT
2ΓκðρkÞW2g0

8<
: ð34Þ

where the constraint can be developed as

γ�WT
2ΓκðρkÞW2g0

3γ�WT
2 α0ðρkÞ ∑

r

i ¼ 1
~α iðρkÞ ~Γ ri

" #�1

W2g0

3γ� 1
α0ðρkÞ

WT
2 ∑

r

i ¼ 1
~α iðρkÞ ~Γ ri

" #�1

W2g01

3γα0ðρkÞ|fflfflfflffl{zfflfflfflffl}
γ′ðρkÞ

�WT
2 ∑

r

i ¼ 1
~α iðρkÞ ~Γ ri

" #�1

W2g0

3γ′ðρkÞ�WT
2 ∑

r

i ¼ 1
~α iðρkÞ ~Γ ri

" #�1

W2g0 ð35Þ

Applying the Schur complement on (35) yields the LMI con-
straint:

∑
r

i ¼ 1
~α iðρkÞ ~Γ ri W2

WT
2 γ′

2
64

3
75g0 ð36Þ

Choosing the vector W2 in the polytopic form

W2 ¼ ∑
r

i ¼ 1
~α iðρkÞWi ð37Þ

and the same structure for γ′ðρkÞ allows us to solve r LMIs:

∑
r

i ¼ 1
~α iðρkÞ

~Γ ri W2 i

W2
T
i γ′

" #
g0 ð38Þ

which is guaranteed by

~Γ ri W2 i

W2
T
i γ′

" #
g0 8 iA11 : rU ð39Þ

Adapting Eq. (31) with the LPV constraint (39), the problem P2

is obtained by the following optimization problem:

minimize
W2

γ′

subject to

~Γ ri W2 i

W2
T
i γ′

" #
g0

trðjYijÞ�εg0 ε40

8>><
>>: 8 iA11 : rU

8>>>>>><
>>>>>>:

ð40Þ

where each Yi is defined by extension of the LTI case as
Yi ¼ diagðXiÞ.

Remark 7. In this formulation, the fact that each matrix ~Γ ri –

defining the polytopic formulation of the problem – has to be
positive definite has been omitted. In effect, the initial matrix
ΓκðρkÞ has been constructed in order to be positive definite.
However, nothing guarantees that each sub-matrices ~Γ ri is posi-
tive definite (as they can represent systems with no physical
meaning), except for ones which really belong to the parameter
definition.

Case of non-positive definite matrices: In agreement with
Remark 7, some matrices written ~Γ

�
ri might not be positive

definite, and can be decomposed via a singular value decomposi-
tion as

~Γ
�
ri ¼ Vn �

Dn140 O

O Dn2o0

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Dn

� VT
n ð41Þ

where Vn corresponds to the eigenvectors of ~Γ
�
ri and Dn the matrix

of its eigenvalues. Matrix Dn1 represents the positive eigenvalues
of matrix Dn while Dn2 the negative ones.

In order to avoid the problem of non-positive definiteness, the
sub-matrix Dn2 is replaced by a matrix Dþ

n2 with positive values,
large enough in order not to affect the result of the optimization.
In effect, it is known that the optimum rise to the lowest
eigenvalue of the system (see Theorem 1).

Remark 8. The best solution is given by the eigenvector associated
to the lowest eigenvalue of the inverse of ~Γ

�
ri . The eigenvalues Dþ

n2
are said to be “large enough” in order not to affect the result of the
optimization. Large enough refers to “at least larger than the other
ones”. In this case, the optimum reached by the optimization
procedure will not be affected.

It is finally considered the matrix �Γ ri instead of ~Γ
�
ri for the

optimization process defined by

�Γ ri ¼ Vn �
Dn1 O

O Dþ
n2

" #
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Dn

� VT
n ð42Þ

Let us just note that the transformation from ~Γ
�
ri to �Γ ri does

not restrict the problem solutions. It is just a way to avoid
unavailable solutions.

4.6. Interest of small time varying parameters

In the past section, it has been highlight the interest of the
polytopic formulation of the matrix Γ�1

k ðρkÞ. The main drawback
of such approach is that it leads to a more conservative solution set
and foremost a large number of subsystems ~Γ ri, 2

N where N stands
for the number of individual scheduling parameters defining
the matrix Γ�1

κ ðρkÞ. The following presents tricks to reduce the
polytope size and so the complexity of the solution.

4.6.1. Taylor approximation
It is known the following equality as the Taylor development of

a function f:

f ðxÞ ¼ ∑
þ1

n ¼ 0

f ðnÞðaÞ
n!

ðx�aÞn ð43Þ

where f ðnÞ denotes the nth derivative of a function (43) at the
point a.

According to this property, the expression of the scheduling
parameters and their time shift can be expressed as

ρðkþτÞ ¼ ρðkÞþτ � ρ′ðkÞ|ffl{zffl}
rMρ

þ ∑
þ1

n ¼ 2

ρðnÞðkÞ
n!

ðτÞn ð44Þ

ρðkþτÞCρðkÞþτMρ ð45Þ
where Mρ represents the maximum variation of parameter ρ.

This simplification (if it can be assumed) is very useful as it
allows us to simplify the problem. If the scheduling parameters
can be considered constant within the time horizon s, it will
lead to a residual constructed with only the knowledge of ρk
instead of ρk� s:k. Finally, the inner products of time shifts are only1 α0ðρkÞa0 as Γκ ðρkÞ is positive definite.
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constructed with the knowledge of the scheduling parameter ρk.
Thanks to this simplification, the further polytope reduction can
be adopted.

4.6.2. Polytope reduction
In the case of small time varying parameters, the scheduling

parameters can be considered as constant within the time window
defined by the horizon.

Thus, it will only remain in the matrix Γ�1
k the term ρk and its

powers in the form Γ�1
κ ðρk;ρ2

k ;…;ρN
k Þ. The classical polytopic

modeling will need to define P ¼ 2r vertices of the polytope.
However, the relation between each parameter is not taken

into account. For instance, in the case of two scheduling para-
meters (as illustrated in Fig. 1), the vertex ω4 ¼ ðρ

1
;ρ2Þ is not

required since the three other vertices are sufficient to character-
ize the parameter definition.

This reductive approach can be generalized to polytopes of
dimension N since the minimal value of the scheduling parameter
is null (as presented in Robert, 2007):

Property 1. A vertex ωj ¼ ðν1;ν2;…;νNÞ – where each coordinate
νi is defined as νi ¼ fρmin ¼ 0;ρmaxg – is an admissible vertex if its
coordinates verify the following property:

νnþ1rρmaxνn ð46Þ
Therefore, as a simplification, only Nþ1 vertices are finally useful
instead of 2N .

Thanks to those presented tricks, the computations are simpli-
fied which allow for implementation on a real vehicle, as pre-
sented in the following section.

5. Application on a vehicle lateral dynamics system

The previous depicted theory has been applied to a vehicle
lateral dynamic system. Some experimental data have been taken
from a real vehicle “Renault Scenic” (Fig. 2). Those data have been
provided by the French laboratory MIPS2 (Modélisation, Intelli-
gence, Processus et Systèmes), a partner in the framework of the
French ANR project INOVE.

5.1. Modeling of the system

The aim of this applicative study is to detect a fault on a lateral
acceleration sensor. The system under consideration is the whole
lateral dynamic system illustrated in Fig. 3.

The modeling of the system rests on the bicycle model as
presented in Poussot-Vassal (2008), Mammar and Koenig (2002),
and Ackermann and Bunte (1997), where the dynamic is given by

_βðtÞ
_rðtÞ

" #
¼

� cαV þ cαH
mvðtÞ

lHcαH � lV cαV
mvðtÞ2 �1

lHcαH � lV cαV
Iz

l2V cαV þ l2HcαH
IzvðtÞ

2
64

3
75 βðtÞ

rðtÞ

" #
þ

cαV
mvðtÞ
lV cαV
Iz

2
4

3
5uLðtÞ

ayðtÞ
rðtÞ

" #
¼ � cαV þ cαH

m
lHcαH � lV cαV

mvðtÞ2

0 1

" #
βðtÞ
rðtÞ

" #
þ

cαV
m

0

" #
uLðtÞ ð47Þ

where β denotes the side slip angle, r the yaw rate, ay the lateral
acceleration, uL the relative steering wheel angle and v(t) the
speed of the vehicle. This model represents the nominal behavior
of the system.

The numerical values and the description of the parameters are
given in the following table:

Variable Value Unit Comments

g 9.80665 m s�2 Gravity acceleration constant
m 1621 kg Vehicle total mass
lV 1.15 m Distance from C.G. to front axle
lH 1.38 m Distance from C.G. to rear axle
Iz 1975 kg m2 Moment of inertia about the z-axis
cαV 57 117 N rad�1 Front axle tire cornering stiffness

cαH 81 396 N rad�1 Rear axle tire cornering stiffness

v m s�1 Vehicle longitudinal velocity
β rad Vehicle side slip angle
_ψ ðtÞ rad s�1 Vehicle raw rate
ay m s�2 Vehicle lateral acceleration
uL rad Vehicle steering angle

As presented in van den Hof, Tóth, and Heuberger (2010),
several discretization techniques for LPV state space models are
available. Here the rectangular discretization is chosen as it
provides a low computational load, and preserves the linearity in
the parameters. The discrete matrices are given by

A0ðρðkÞÞ ¼ InþTdAðρðkTdÞÞ
B0ðρðkÞÞ ¼ TdBðρðkTdÞÞ

C0ðρðkÞÞ ¼ CðρðkTdÞÞ

D0ðρðkÞÞ ¼DðρðkTdÞÞ

where Td is the sampling period. Thus, the nominal discrete LPV
matrices (as in (5)) corresponding to the state space model are

Fig. 1. Illustration of the polytope reduction.

Fig. 2. Photo of the Renault Scenic used.

2 http://www.mips.uha.fr/.
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given in the following equation:

A0ðρkÞ ¼
1 �Td

Td
lHcαH � lV cαV

Iz
1

" #
þ 1
vðkTdÞ|fflfflffl{zfflfflffl}

ρ1k

�Td
cαV þ cαH

m 0

0 �Td
l2v cαV þ l2HcαH

Iz

2
4

3
5

þ 1
vðkTdÞ2|fflfflfflffl{zfflfflfflffl}

ρ2k

0 Td
lHcαH � lvcαV

m

0 0

" #
ð48aÞ

B0ðρkÞ ¼
0

Td
lV cαV
Iz

" #
þρ1k

Td
cαV
m

0

" #
ð48bÞ

C0ðρkÞ ¼
� cαV þ cαH

m 0
0 1

" #
þρ1k

0 lHcαH � lvcαV
m

0 0

" #
ð48cÞ

D0ðρkÞ ¼
cαV
m

0

" #
ð48dÞ

where there are two scheduling parameters ρ1k ¼ 1=vðkTdÞ and
ρ2k ¼ 1=vðkTdÞ2. However, the dependency between parameters ρ1
and ρ2 is clear ρ2 ¼ ρ2

1. This relation is taken for further computa-
tions. Only one scheduling parameter ρ1k is finally considered.

Note that these matrices A0ðρkÞ, B0ðρkÞ, C0ðρkÞ and D0ðρkÞ
represent the nominal model of the system.

5.2. Data selection

MIPS laboratory provided data on the speed of the vehicle,
steering wheel angle and lateral acceleration. The steering wheel
angle and the vehicle longitudinal speed are respectively pre-
sented in Fig. 4a and b. A comparison between the data from
MIPS and the corresponding bicycle model outputs is illustrated in
Fig. 4c.

In can be observed that the bicycle model fits the real vehicle
dynamics. However, some differences can be noticed especially
due to the neglected dynamics, the modeling approximations and
inaccurate parameters. This remark emphasis the uncertain char-
acteristic of the method.Fig. 3. Illustration of the vehicle lateral dynamics.
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Fig. 4. Comparison between MIPS data and the bicycle model: (a) steering wheel angle, (b) vehicle longitudinal speed, (c) lateral acceleration, (d) yaw rate.
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5.3. Fault detection by U�LPV parity space approach

The matrices A1, Bd and Dd have been designed as in (5) to
complete the model which is not perfect. In effect, mostly the
stiffness parameters cαV and cαH are not perfectly known. Conse-
quently, the matrix A1 is chosen as 20% of the nominal state matrix
A0, by considering a constant mean speed of 75 km h�1C
20:83 m s�1, so ρn ¼ 1

20:83 ¼ 0:048.

A1 ¼ 0:2A0ðρnÞ ¼ 0:2A0ð0:048Þ
In addition, one uncertain input is considered with its distribu-

tion matrices Bd and Dd given by

Bd ¼ 0:2B0ð0:048Þ; Dd ¼
0

2:064

� �

Those matrices allow us to encompass the differences observed
in Fig. 4. At this step, the system formulation has exactly the same
structure as in (5).

The horizon s has been chosen as s¼3 in order to ensure a
perfect decoupling face to the nominal system.

As the scheduling parameter ρ1 is related to the longitudinal
speed of the vehicle, it can be assumed as constant within the
horizon of s¼3 samples (60 ms).

The matrix PðρkÞ – which constitutes the first step in the
computation of the parity matrix – is built from Eq. (12). Then
matrices Γ1ðρkÞ and Γ2ðρkÞ are constructed. It yields six products
of the scheduling parameters ρ1k in their definition.

The constant κ has been chosen as κ ¼ 27 to guarantee the
positive definiteness of the matrix ΓκðρkÞ. Thus, the inverse matrix
Γ�1

k ðρkÞ is computed. It results 14 products of the scheduling
parameter ρ1k.

At this step, for the sake of the polytopic modeling, it should be
considered 214 ¼ 16 384 vertices of the polytope, which is techni-
cally not available. It has to be pointed out that in this applicative
example, the scheduling parameter ρ1k is always lower than
1 since the vehicle longitudinal speed is larger than 3.6 km h�1.
As a first simplification, the terms ρx

1k lower than a certain thres-
hold can be omitted. Moreover, thanks to the simplifications
exposed in Section 4.6.2, the necessary number of vertices is
reduced to 6, which is far easier to compute and to implement.

Finally, the LMI optimization process leads to the vector W2ðρkÞ
constructed with six sub-vectors W2i as

W2ðρkÞ ¼ ∑
6

i ¼ 1
~α iðρkÞW2i ð49Þ

It is recalled that all those computations are handled off-line.

5.4. Faulty scenario

The data are performed on a healthy measurement system. As a
consequence, the fault has been numerically added in simulation.
The considered fault f(k) has been added from t ¼ 150 s to t ¼
158 s to the first system output ay(k). Its amplitude is þ0.5 m s�2.

5.5. Residuals

It has been compared both LPV and U�LPV approaches applied
in this application. Both residuals rLPV and rLPVu respectively
representing the residual of the LPV and U�LPV approach are
illustrated in Fig. 5.

Remark 9. It has to be recalled that a residual does not have
any dimension. In this case, the comparison between different
residuals has been done with normalized residuals, meaning that
the mean value of the residual during the faulty time is one.

In this approach, it can be shown that both approaches lead to
effective fault detection. However, the LPV approach is quite
sensitive to the unmodeled dynamics. In effect, it can be shown
that after the fault, when the residual should be small, it remains
some large amplitudes. As an information, the min/max ratio
representing the minimum value in faulty case face the maximal
value in healthy situation is computed: ϖLPV ¼ 1:39.

On the other hand, the U�LPV approach gives some better
results. In effect, it can be shown that the effect of unmodeled
dynamics has been attenuated. In effect, the min/max ratio is
in this case ϖLPVu ¼ 4:04. This result emphasizes the uncertain
characteristic of the approach.

6. Conclusion

The problem which is considered in this paper is the design of
residuals for Fault Detection on LPV systems and Uncertain LPV
systems subject to Unknown Inputs. The objectives have been
fulfilled by considering the classical parity-space based fault
detection approach, but addressed for scheduled matrices. The
resulting parity matrices are also parameters dependent. Thus, the
uncertainty has been tackled by synthesizing a parity matrix via an
LMI optimization which is sensitive to the fault and the least
receptive to uncertainties nor disturbances.

The method has been successfully applied to experimental data
coming from the MIPS laboratory on a vehicle “Renault Scenic”.
The final result compares the single LPV approach face to the
U�LPV one. This second approach shows the interest of consider-
ing uncertainties within the residual synthesis.
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